Zobrazeno 1 - 10
of 58
pro vyhledávání: '"S. A. Kaschenko"'
Publikováno v:
Моделирование и анализ информационных систем, Vol 22, Iss 5, Pp 609-628 (2015)
We consider the problem of density wave propagation of a logistic equation with deviation of the spatial variable and diffusion (Fisher-Kolmogorov equation with deviation of the spatial variable). A Ginzburg–Landau equation was constructed in orde
Externí odkaz:
https://doaj.org/article/830047026ca84c91b3e2f770b62140ff
Autor:
S. A. Kaschenko
Publikováno v:
Моделирование и анализ информационных систем, Vol 22, Iss 5, Pp 682-710 (2015)
We consider a linear differential equation of second order with a small factor at the highest derivative. We study the problem of the asymptotic behavior of the eigenvalues of the first boundary value problem (task Dirichlet) in situation when the
Externí odkaz:
https://doaj.org/article/a717fd4435ed401bb39ad32af78999c2
Autor:
N. D. Bykova, S. A. Kaschenko
Publikováno v:
Моделирование и анализ информационных систем, Vol 22, Iss 3, Pp 372-391 (2015)
A system of two logistic equations with delay coupled by delayed control is considered. It is shown that in the case of a sufficiently large delay control coefficient the problem of the dynamics of the initial systems is reduced to studying the non-l
Externí odkaz:
https://doaj.org/article/77d5754b4e004870a4d162254cccb0f7
Publikováno v:
Моделирование и анализ информационных систем, Vol 22, Iss 2, Pp 304-321 (2015)
We considered the problem of density wave propagation in a logistic equation with delay and diffusion (Fisher–Kolmogorov equation with delay). It was constructed a Ginzburg–Landau equation in order to study the qualitative behavior of the solutio
Externí odkaz:
https://doaj.org/article/540ebe72302d4ef6bfe19cb7ae501789
Autor:
S. A. Kaschenko
Publikováno v:
Моделирование и анализ информационных систем, Vol 19, Iss 5, Pp 18-34 (2015)
Relaxation oscillations in a first order differential equation with two delays are considered. On the basis of a special asymptotic big parameter method the problem of studying dynamics of an equation is reduced to the analysis of nonlinear mappings.
Externí odkaz:
https://doaj.org/article/a214a38c0ccc48b69f17249df444a701
Autor:
D. S. Glyzin, S. A. Kaschenko
Publikováno v:
Моделирование и анализ информационных систем, Vol 19, Iss 5, Pp 35-39 (2015)
In the article the complex Hutchinson equation is studied. New results on numerically observable space-inhomogenious solutions are obtained.
Externí odkaz:
https://doaj.org/article/de737f1a28a04814be593c922d26fd9e
Autor:
S. A. Kaschenko
Publikováno v:
Моделирование и анализ информационных систем, Vol 19, Iss 3, Pp 32-62 (2015)
We discuss the dynamics of the Hutchinson’s equation and its generalizations. An estimate of the global stability region of a positive steady state is obtained. The main results refer to existence, stability and asymptotics of a slow oscillating so
Externí odkaz:
https://doaj.org/article/2f6baf65f15e4ad789af88384483a94c
Autor:
S. A. Kaschenko
Publikováno v:
Моделирование и анализ информационных систем, Vol 21, Iss 5, Pp 61-77 (2014)
Dynamical properties of a logistic equation with delay and delay control are studied by asymptotic methods. It is shown that effective control of characteristics of relaxation cycle is possible. A new method for studying the dynamics in the case of s
Externí odkaz:
https://doaj.org/article/b96a63a73fe04c2899ca1219d140256a
Autor:
S. A. Kaschenko, V. E. Frolov
Publikováno v:
Моделирование и анализ информационных систем, Vol 21, Iss 1, Pp 94-114 (2014)
We study the dynamics of finite-difference approximation on spatial variables of a logistic equation with delay and diffusion. It is assumed that the diffusion coefficient is small and the Malthusian coefficient is large. The question of the existenc
Externí odkaz:
https://doaj.org/article/5bf6cf1e381c4dd3824612bd612e71ae
Autor:
S. V. Aleshin, S. A. Kaschenko
Publikováno v:
Моделирование и анализ информационных систем, Vol 21, Iss 1, Pp 73-88 (2014)
We considered a logistic equation with delay and studied its local dynamics. The critical cases have been found in the problem of the equilibrium state stability. We applied standard Andronov-Hopf biffurcation methods for delay differential equations
Externí odkaz:
https://doaj.org/article/f27dcb08724f4eb59c1f115122fab6ce