Zobrazeno 1 - 10
of 11
pro vyhledávání: '"S. A. Imomkulov"'
Publikováno v:
Contemporary Mathematics. Fundamental Directions. 67:620-633
In this paper, we study the class of -subharmonic functions. A number of important properties of -subharmonic functions are proved, and an equivalent, more convenient definition of -subharmonicity is given. The geometric structure of removable singul
Publikováno v:
Central Asian Problems of Modern Science and Education. :66-80
Autor:
S H Imomkulov, Z Abdukahharov
Publikováno v:
International Journal of Engineering and Technology. 12:503-507
Publikováno v:
Mathematical Notes. 96:992-995
It is proved that the restriction of a bounded subharmonic function in a domain D ⊂ ℂ to any real line l ⊂ℂ possesses the Lebesgue property at each point of l ∩ D.
Autor:
S. A. Imomkulov, Zafar Ibragimov
Publikováno v:
Analysis and Mathematical Physics. 5:161-170
In this paper we prove pluripolarity of graphs of Denjoy quasianalytic functions of several variables on the spanning set $$\begin{aligned} T^n = \left\{ z \in {\mathbb C}^n:|z_1|=|z_2|=\dots |z_n|=1\right\} . \end{aligned}$$
Autor:
A. S. Sadullaev, S. A. Imomkulov
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 253:144-159
The paper is of survey character. We present and discuss recent results concerning the extension of functions that admit holomorphic or plurisubharmonic extension in a fixed direction. These results are closely related to Hartogs’ fundamental theor
Autor:
S. A. Imomkulov, A. S. Sadullaev
Publikováno v:
Mathematical Notes. 79:869-877
Let D ⊂ ℂn be a domain with smooth boundary ∂D, let E⊂∂D be a subset of positive Lebesgue measure mes(E) > 0, and let F ⊂ G be a nonpluripolar compact set in a strongly pseudoconvex domain D ⊂ ℂm. We prove that, under an additional co
Autor:
A. S. Sadullaev, S. A. Imomkulov
Publikováno v:
Mathematical Notes. 79:215-223
Autor:
S. A. Imomkulov
Publikováno v:
Izvestiya: Mathematics. 69:345-363
We study domains of holomorphy of functions having thin singularities along a fixed direction. We prove a boundary analogue of Hartogs' theorem on the holomorphic continuation of functions of several variables that admit holomorphic continuation in o
Autor:
S. A. Imomkulov, J. U. Khujamov
Publikováno v:
Mathematica Bohemica. 130:309-322