Zobrazeno 1 - 10
of 394
pro vyhledávání: '"S., Pirzada"'
Autor:
Amir Rehman, S. Pirzada
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Pp 1-3 (2024)
Let G be a graph of size m and [Formula: see text] be the spectral radius of its adjacency matrix. A graph is said to be H-free if it does not contain a subgraph isomorphic to H. Let [Formula: see text] be the graph obtained by adding a pendent verte
Externí odkaz:
https://doaj.org/article/02d2e6163c7f48f18cdce86373520aaf
Publikováno v:
AIMS Mathematics, Vol 8, Iss 12, Pp 29008-29016 (2023)
For a $ \nu $-vertex connected graph $ \Gamma $, we consider the reciprocal distance Laplacian matrix defined as $ RD^L(\Gamma) = RT(\Gamma)-RD(\Gamma) $, i.e., $ RD^L(\Gamma) $ is the difference between the diagonal matrix of the reciprocal distance
Externí odkaz:
https://doaj.org/article/82c451bf18714230b0b6dfb03c2e78be
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Vol 20, Iss 3, Pp 282-286 (2023)
AbstractLet G be a connected simple graph with n vertices. The distance Laplacian matrix [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the diagonal matrix of vertex transmissions and [Formula: see text] is the di
Externí odkaz:
https://doaj.org/article/cc3f1aec7bb146c597c71d5d1a376bb5
Publikováno v:
Karpatsʹkì Matematičnì Publìkacìï, Vol 14, Iss 1, Pp 185-193 (2022)
If $Tr(G)$ and $D(G)$ are respectively the diagonal matrix of vertex transmission degrees and distance matrix of a connected graph $G$, the generalized distance matrix $D_{\alpha}(G)$ is defined as $D_{\alpha}(G)=\alpha ~Tr(G)+(1-\alpha)~D(G)$, where
Externí odkaz:
https://doaj.org/article/7ac0dddddfac4d2d864bf05ac96ffab4
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Vol 19, Iss 2, Pp 146-153 (2022)
In a graph G, if di is the degree of a vertex vi, the geometric-arithmetic matrix GA(G) is a square matrix whose [Formula: see text]-th entry is [Formula: see text] whenever vertices i and j are adjacent and 0 otherwise. The set of all eigenvalues of
Externí odkaz:
https://doaj.org/article/2678bce432044b03a089c9e8339ec18f
Publikováno v:
Electronic Journal of Graph Theory and Applications, Vol 9, Iss 2, Pp 331-345 (2021)
For a finite commutative ring ℤn with identity 1 ≠ 0, the zero divisor graph Γ(ℤn) is a simple connected graph having vertex set as the set of non-zero zero divisors, where two vertices x and y are adjacent if and only if xy=0. We find the nor
Externí odkaz:
https://doaj.org/article/3ad1b70c76084818aae275be965f6eb2
Publikováno v:
Karpatsʹkì Matematičnì Publìkacìï, Vol 13, Iss 1, Pp 48-57 (2021)
For a finite commutative ring $\mathbb{Z}_{n}$ with identity $1\neq 0$, the zero divisor graph $\Gamma(\mathbb{Z}_{n})$ is a simple connected graph having vertex set as the set of non-zero zero divisors, where two vertices $x$ and $y$ are adjacent if
Externí odkaz:
https://doaj.org/article/ad8f11e48c1b4e798612407513c6d4d5
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Vol 18, Iss 1, Pp 1-6 (2021)
Let Z(R) be the set of zero-divisors of a commutative ring R with non-zero identity and be the set of non-zero zero-divisors of R. The zero-divisor graph of R, denoted by is a simple graph whose vertex set is and two vertices are adjacent if and only
Externí odkaz:
https://doaj.org/article/401ef29e155b4698bd5f982517a2fe0a
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Vol 18, Iss 1, Pp 39-46 (2021)
Let A(G) be the adjacency matrix and D(G) be the diagonal matrix of the vertex degrees of a simple connected graph G. Nikiforov defined the matrix of the convex combinations of D(G) and A(G) as for If are the eigenvalues of (which we call α-adjacenc
Externí odkaz:
https://doaj.org/article/7e8a4111fd1f44d79dfd821325eccfaa
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Vol 17, Iss 1, Pp 168-173 (2020)
For a commutative ring with non-zero zero divisor set , the zero divisor graph of is with vertex set , where two distinct vertices and are adjacent if and only if . The upper dimension and the resolving number of a zero divisor graph of some rings ar
Externí odkaz:
https://doaj.org/article/96e1ee60806b40abb192a705425df00f