Zobrazeno 1 - 10
of 66
pro vyhledávání: '"S Stones"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Annals of the Rheumatic Diseases. 81:79.1-79
BackgroundJuvenile idiopathic arthritis (JIA) is a complex long-term condition requiring lifelong management [1]. Children and young people (CYP) should be empowered to self-manage their health and wellbeing (H&W) from diagnosis [2], while families s
Publikováno v:
PLoS ONE, Vol 7, Iss 12, p e50093 (2012)
A motif in a network is a connected graph that occurs significantly more frequently as an induced subgraph than would be expected in a similar randomized network. By virtue of being atypical, it is thought that motifs might play a more important role
Externí odkaz:
https://doaj.org/article/ce7aa286e61a4ebb968fa8b482c55217
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
N. Robertson, J. Gunderson, S. Stones, L. Wilhelm, L. Proulx, A. McKinnon, A. Sirois, J. Coe, D.P. Richards
Publikováno v:
Annals of the Rheumatic Diseases. 79:122-122
Background:In 2019, EULAR launched the #Time2Work campaign [1] to raise awareness of the impact of rheumatic and musculoskeletal diseases on individuals, society, and the economy. Building on this theme, the Canadian Arthritis Patient Alliance (CAPA)
Publikováno v:
Journal of Sports Sciences. 32:s22-s27
Autor:
Douglas S. Stones
Publikováno v:
European Journal of Combinatorics. 34:1092-1107
In this paper, we study symmetries (autoparatopisms) of partial Latin squares. Let s ( n ) be the minimum number of non-empty cells in a partial Latin square of order n with a trivial autoparatopism group. We show 1 5 ( 6 n − 7 ) ≤ s ( n ) ≤ 1
Publikováno v:
Combinatorica. 33:11-22
A subsquare of a Latin square L is a submatrix that is also a Latin square. An autotopism of L is a triplet of permutations (?, s, ?) such that L is unchanged after the rows are permuted by ?, the columns are permuted by s and the symbols are permute
Autor:
Ian M. Wanless, Douglas S. Stones
Publikováno v:
Nagoya Math. J. 205 (2012), 1-24
The sign of a Latin square is −1 if it has an odd number of rows and columns that are odd permutations; otherwise, it is +1. LetLEnandLonbe, respectively, the number of Latin squares of ordernwith sign +1 and −1. The Alon-Tarsi conjecture asserts
Autor:
Ian M. Wanless, Douglas S. Stones
Publikováno v:
Annals of Combinatorics. 16:349-365
A partial orthomorphism of $${\mathbb{Z}_{n}}$$ is an injective map $${\sigma : S \rightarrow \mathbb{Z}_{n}}$$ such that $${S \subseteq \mathbb{Z}_{n}}$$ and σ(i)–i ≢ σ(j)− j (mod n) for distinct $${i, j \in S}$$ . We say σ has deficit d if