Zobrazeno 1 - 10
of 1 256
pro vyhledávání: '"S Selvakumar"'
Publikováno v:
PLoS ONE, Vol 18, Iss 9, p e0291777 (2023)
At present, the fault diagnosis of pumping units in major oil fields in China is time-consuming and inefficient, and there is no universal problem for high requirements of hardware resources. In this study, a fault fusion diagnosis method of pumping
Externí odkaz:
https://doaj.org/article/56fe2ff3881445bc9c1f1da2f284514a
Publikováno v:
In Materials Today: Proceedings 2022 52 Part 3:1326-1330
Autor:
Li, Bowen1 (AUTHOR), Raja, S. Selvakumar2 (AUTHOR) s_selvakumar_raja@126.com, Li, Jiajun3 (AUTHOR), Yao, Zejun1 (AUTHOR), Song, Wenguang1 (AUTHOR), Li, Haoyuan1 (AUTHOR)
Publikováno v:
PLoS ONE. 9/25/2023, Vol. 18 Issue 9, p1-26. 26p.
Publikováno v:
Ural Mathematical Journal, Vol 8, Iss 1 (2022)
This paper explores the two-commodity (TC) inventory system in which commodities are classified as major and complementary items. The system allows a customer who has purchased a free product to conduct Bernoulli trials at will. Under the Bernoulli s
Externí odkaz:
https://doaj.org/article/7ee5ccf8c1a442778bc4661ad50e7c87
Publikováno v:
AIMS Mathematics, Vol 6, Iss 7, Pp 7386-7420 (2021)
This paper investigates the queue-dependent service rates(QDSR) in the stochastic queueing-inventory system(SQIS). This SQIS consists a single server service channel, S number of inventories, and a finite queue. An arriving customer gets the service
Externí odkaz:
https://doaj.org/article/6e8aeaa4e5f04219bb03a4b1d19a7432
Autor:
Jian, Zhang1 (AUTHOR), Raja, S. Selvakumar2 (AUTHOR), Lei, Liang1 (AUTHOR), Shu, Dai1 (AUTHOR)
Publikováno v:
Shock & Vibration. 6/27/2023, p1-14. 14p.
Publikováno v:
In Future Generation Computer Systems December 2020 113:255-265
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Shock and Vibration, Vol 2022 (2022)
This paper aims at the shortcomings of the current conventional processing methods of bearing fault vibration signals in improving signal-to-noise ratio, fine feature extraction, and recognition. A feature extraction and recognition method of abnorma
Externí odkaz:
https://doaj.org/article/992e0fc5914c4b5c9978e16329541bc0
Publikováno v:
In Neurocomputing 7 May 2019 340:294-308