Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Sławomir Turek"'
The $Golomb$ $space$ (resp. the $Kirch$ $space$) is the set $\mathbb N$ of positive integers endowed with the topology generated by the base consisting of arithmetic progressions $a+b\mathbb N_0=\{a+bn:n\ge 0\}$ where $a\in\mathbb N$ and $b$ is a (sq
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::56ed5e83bfd69abfbd2289433b91553e
http://arxiv.org/abs/2006.12357
http://arxiv.org/abs/2006.12357
Publikováno v:
Commentationes Mathematicae Universitatis Carolinae. 59:423-442
The Golomb space $\mathbb N_\tau$ is the set $\mathbb N$ of positive integers endowed with the topology $\tau$ generated by the base consisting of arithmetic progressions $\{a+bn\}_{n=0}^\infty$ with coprime $a,b$. We prove that the Golomb space $\ma
Autor:
Andrzej Kucharski, Sławomir Turek
Publikováno v:
Topology and its Applications. 268:106897
We introduce a new class of ϰ-metrizable spaces, namely countably ϰ-metrizable spaces. We show that the class of all ϰ-metrizable spaces is a proper subclass of countably ϰ-metrizable spaces. On the other hand, for pseudocompact spaces the new cl
Publikováno v:
Open Mathematics, Vol 12, Iss 1, Pp 46-56 (2014)
The aim of this paper is to show that every infinite Boolean algebra which admits a countable minimally acting group contains a dense projective subalgebra.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::df8945bbe3be6e2e025e1c2114e3e48a
http://hdl.handle.net/20.500.12128/8874
http://hdl.handle.net/20.500.12128/8874
A topological space $X$ is called hereditarily supercompact if each closed subspace of X is supercompact. By a combined result of Bula, Nikiel, Tuncali, Tymchatyn, and Rudin, each monotonically normal compact Hausdorff space is hereditarily supercomp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::026405efc72b7c45bab80fac789a88ee
We study an analogue of the Parovicenko property in categories of compact spaces with additional structures. In particular, we present an internal characterization of this property in the class of compact median spaces.
Comment: Minor revision,
Comment: Minor revision,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6fa7a246858f691c3372964b08377881
We prove that a continuum $X$ is tree-like (resp. circle-like, chainable) if and only if for each open cover $\U_4=\{U_1,U_2,U_3,U_4\}$ of $X$ there is a $\U_4$-map $f:X\to Y$ onto a tree (resp. onto the circle, onto the interval). A continuum $X$ is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::810d99718e3f2e68681af984ba916dee