Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Sürig, Philipp"'
Autor:
Sürig, Philipp
We consider on Riemannian manifolds the non-linear evolution equation $$\rho \partial _{t}u=\Delta _{p}u^{q}.$$ Assuming that the manifold satisfies a weighted Sobolev inequality and under certain assumptions on $p, q$ and function $\rho$, we prove t
Externí odkaz:
http://arxiv.org/abs/2412.06496
Autor:
Sürig, Philipp
We consider on Riemannian manifolds the nonlinear evolution equation \begin{equation*} \partial _{t}u=\Delta _{p}(u^{1/(p-1)}), \end{equation*}% where $p>1$. This equation is also known as a doubly non-linear parabolic equation or Trudinger's equatio
Externí odkaz:
http://arxiv.org/abs/2309.01218
Autor:
Grigor'yan, Alexander, Sürig, Philipp
We investigate heat kernel estimates of the form $p_{t}(x, x)\geq c_{x}t^{-\alpha},$ for large enough $t,$ where $\alpha$ and $c_{x}$ are positive reals and $c_{x}$ may depend on $x,$ on manifolds having at least one end.
Comment: 30 pages
Comment: 30 pages
Externí odkaz:
http://arxiv.org/abs/2201.05695
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Grigor'yan, Alexander, Sürig, Philipp
Publikováno v:
Potential Analysis; Jan2024, Vol. 60 Issue 1, p45-77, 33p
Autor:
Sürig, Philipp
We investigate heat kernel estimates of the form $p_{t}(x, x) ≥ c_{x}t^{−α}$, for large enough $t$, where $α$ and $c_{x}$ are positive reals and $c_{x}$ may depend on $x$, on manifolds having at least one end with a polynomial volume growth.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d05a668ac5e11608517645c787d5432e
https://pub.uni-bielefeld.de/record/2962225
https://pub.uni-bielefeld.de/record/2962225
Autor:
Sürig, Philipp1 (AUTHOR) philipp.suerig@uni-bielefeld.de
Publikováno v:
Nonlinear Analysis. Dec2024, Vol. 249, pN.PAG-N.PAG. 1p.