Zobrazeno 1 - 10
of 113
pro vyhledávání: '"Sébastien, Limet"'
Publikováno v:
International Journal of Parallel Programming. 51:109-127
The increasing size of deep neural networks (DNNs) raises a high demand for distributed training. An expert could find good hybrid parallelism strategies, but designing suitable strategies is time and labor-consuming. Therefore, automating parallelis
Publikováno v:
International Journal of Parallel Programming. 50:360-380
Publikováno v:
In Procedia Computer Science 2013 18:591-600
Publikováno v:
Computational Science – ICCS 2022 ISBN: 9783031087509
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::54995e22d9a0b98d3d3e7dce19c4a7e5
https://doi.org/10.1007/978-3-031-08751-6_41
https://doi.org/10.1007/978-3-031-08751-6_41
Publikováno v:
[Research Report] LIFO, Université d'Orléans, INSA Centre Val de Loire. 2021
HAL
HAL
Similarity Joins are recognized to be among the most useful data processing and analysis operations. A similarity join is used to retrieve all data pairs whose distances are smaller than a predened threshold λ. In this paper, we introduce the MRS-jo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::30ca64809d44d487a14e53b0b6c68e46
https://hal.archives-ouvertes.fr/hal-03276756
https://hal.archives-ouvertes.fr/hal-03276756
Autor:
Haoran Wang, Chong Li, Hongxing Wang, Sheng Yang, Sébastien Limet, Thibaut Tachon, Sophie Robert
Publikováno v:
Euro-Par 2021: Parallel Processing ISBN: 9783030856649
Euro-Par
Euro-Par
Deep neural networks (DNNs) are playing an increasingly important role in our daily life. Since the size of DNNs is continuously growing up, it is highly important to train them effectively by distributing computation on multiple connected devices. T
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::17063d2be825b3f168d1f66e46ad70a6
https://doi.org/10.1007/978-3-030-85665-6_13
https://doi.org/10.1007/978-3-030-85665-6_13
Autor:
Sébastien Limet, Pierre Réty
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol 1, Iss 1 (1997)
The goal of this paper is both to give an E-unification procedure that always terminates, and to decide unifiability. For this, we assume that the equational theory is specified by a confluent and constructor-based rewrite system, and that four addit
Externí odkaz:
https://doaj.org/article/76bf178ab0a94c4ca89986b2748c9bea
Autor:
Sylvain Jubertie, Philippe Thierry, Fabrice Dupros, Sébastien Limet, Florent De Martin, Gauthier Sornet
Publikováno v:
to appear in CPS proceedings
PDP 2018
PDP 2018, Mar 2018, Cambridge, United Kingdom
PDP
PDP 2018
PDP 2018, Mar 2018, Cambridge, United Kingdom
PDP
International audience; —The Finite-Element Method (FEM) is routinely used to solve Partial Differential Equations (PDE) in various scientific domains. For seismic waves modeling, the Spectral Element Method (SEM), which is a specific formulation o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::994d18f12aaf7ba814f7e648a7277b78
https://hal-brgm.archives-ouvertes.fr/hal-01680058/document
https://hal-brgm.archives-ouvertes.fr/hal-01680058/document
Autor:
Sébastien Limet, Hélène Coullon
Publikováno v:
Concurrency and Computation: Practice and Experience. 28:2120-2144
Scientific simulations give rise to complex codes where data size and computation time become very important issues, and sometimes a scientific barrier. Thus, parallelization of scientific simulations becomes a significant work. Many time and human e
Publikováno v:
High Performance Computing & Simulation
High Performance Computing & Simulation, Jul 2017, Gênes, Italy
HPCS
High Performance Computing & Simulation, Jul 2017, Gênes, Italy
HPCS
International audience; —The watershed computation is a prevalent task in the geographical information systems. It is used, among other purposes, to forecast the pollutant concentration and its impact on the water quality. The algorithm to compute
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7afad0aacd17f27291eec07ae37fc557
https://hal-univ-orleans.archives-ouvertes.fr/hal-01557052
https://hal-univ-orleans.archives-ouvertes.fr/hal-01557052