Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Ryuichiro Hataya"'
Autor:
Ryuichiro Hataya, Hideki Nakayama
Publikováno v:
2022 International Joint Conference on Neural Networks (IJCNN).
Publikováno v:
ICASSP
Recent progress in deep learning has enhanced image classification performance. However, classification using deep convolutional neural networks lacks interpretability. To solve this problem, we propose a novel method of explainable classification; t
Publikováno v:
Geological Society of America Abstracts with Programs.
Autor:
Yudai Nagano, Claudio Ferretti, Carmelo Militello, Leonardo Rundo, Ryuichiro Hataya, Salvatore Vitabile, Giancarlo Mauri, Marco S. Nobile, Changhee Han, Maria Carla Gilardi, Jin Zhang, Andrea Tangherloni, Hideki Nakayama
Publikováno v:
Neural Approaches to Dynamics of Signal Exchanges, edited by Anna Esposito, Marcos Faundez-Zanuy Francesco Carlo Morabito, Eros Pasero, pp. 269–280. Basel: Springer Nature Switzerland, 2020
info:cnr-pdr/source/autori:Rundo L.; Han C.; Zhang J.; Hataya R.; Nagano Y.; Militello C.; Ferretti C.; Nobile M.S.; Tangherloni A.; Gilardi M.C.; Vitabile S.; Nakayama H.; Mauri G./titolo:CNN-Based Prostate Zonal Segmentation on T2-Weighted MR Images: A Cross-Dataset Study/titolo_volume:Neural Approaches to Dynamics of Signal Exchanges/curatori_volume:Anna Esposito, Marcos Faundez-Zanuy Francesco Carlo Morabito, Eros Pasero,/editore: /anno:2020
Neural Approaches to Dynamics of Signal Exchanges ISBN: 9789811389498
Neural Approaches to Dynamics of Signal Exchanges
info:cnr-pdr/source/autori:Rundo L.; Han C.; Zhang J.; Hataya R.; Nagano Y.; Militello C.; Ferretti C.; Nobile M.S.; Tangherloni A.; Gilardi M.C.; Vitabile S.; Nakayama H.; Mauri G./titolo:CNN-Based Prostate Zonal Segmentation on T2-Weighted MR Images: A Cross-Dataset Study/titolo_volume:Neural Approaches to Dynamics of Signal Exchanges/curatori_volume:Anna Esposito, Marcos Faundez-Zanuy Francesco Carlo Morabito, Eros Pasero,/editore: /anno:2020
Neural Approaches to Dynamics of Signal Exchanges ISBN: 9789811389498
Neural Approaches to Dynamics of Signal Exchanges
Prostate canceris the most common cancer among US men. However, prostateimaging is still challenging despite the advances in multi-parametric magnetic resonance imaging (MRI), which provides both morphologic and functional information pertaining to t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7806e6c99f6f4d16f227155e7434fb5b
http://hdl.handle.net/10447/418700
http://hdl.handle.net/10447/418700
Publikováno v:
Computer Vision – ECCV 2020 ISBN: 9783030585945
ECCV (25)
ECCV (25)
Data augmentation methods are indispensable heuristics to boost the performance of deep neural networks, especially in image recognition tasks. Recently, several studies have shown that augmentation strategies found by search algorithms outperform ha
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c3c59cdaeb1bca3fef223b63045ed95f
https://doi.org/10.1007/978-3-030-58595-2_1
https://doi.org/10.1007/978-3-030-58595-2_1
Autor:
Tatsuya Harada, Ryuichiro Hataya, Masamichi Takahashi, Ryuji Hamamoto, Akiko Nakagawa, Kazuma Kobayashi, Mototaka Miyake, Yusuke Kurose
Publikováno v:
Medical Image Analysis. 74:102227
In medical imaging, the characteristics purely derived from a disease should reflect the extent to which abnormal findings deviate from the normal features. Indeed, physicians often need corresponding images without abnormal findings of interest or,
Autor:
Ryuichiro Hataya, Hideki Nakayama
Publikováno v:
ICIP
Deep convolutional neural networks excel in image recognition, but they are also known to be fragile to label corruption. To mitigate this problem, we propose to dynamically switch two loss functions, categorical cross entropy and mean absolute error
Autor:
Claudio Ferretti, Carmelo Militello, Yudai Nagano, Changhee Han, Hideki Nakayama, Paolo Cazzaniga, Giancarlo Mauri, Salvatore Vitabile, Jin Zhang, Maria Carla Gilardi, Ryuichiro Hataya, Marco S. Nobile, Andrea Tangherloni, Daniela Besozzi, Leonardo Rundo
Publikováno v:
Neurocomputing (Amst.) 365 (2019): 31–43. doi:10.1016/j.neucom.2019.07.006
info:cnr-pdr/source/autori:Rundo, Leonardo*; Han, Changhee*; Nagano, Yudai; Zhang, Jin; Hataya, Ryuichiro; Militello, Carmelo; Tangherloni, Andrea; Nobile, Marco S.; Ferretti, Claudio; Besozzi, Daniela; Gilardi, Maria Carla; Vitabile, Salvatore; Mauri, Giancarlo; Nakayama, Hideki; Cazzaniga, Paolo/titolo:USE-Net: Incorporating Squeeze-and-Excitation blocks into U-Net for prostate zonal segmentation of multi-institutional MRI datasets/doi:10.1016%2Fj.neucom.2019.07.006/rivista:Neurocomputing (Amst.)/anno:2019/pagina_da:31/pagina_a:43/intervallo_pagine:31–43/volume:365
info:cnr-pdr/source/autori:Rundo, Leonardo*; Han, Changhee*; Nagano, Yudai; Zhang, Jin; Hataya, Ryuichiro; Militello, Carmelo; Tangherloni, Andrea; Nobile, Marco S.; Ferretti, Claudio; Besozzi, Daniela; Gilardi, Maria Carla; Vitabile, Salvatore; Mauri, Giancarlo; Nakayama, Hideki; Cazzaniga, Paolo/titolo:USE-Net: Incorporating Squeeze-and-Excitation blocks into U-Net for prostate zonal segmentation of multi-institutional MRI datasets/doi:10.1016%2Fj.neucom.2019.07.006/rivista:Neurocomputing (Amst.)/anno:2019/pagina_da:31/pagina_a:43/intervallo_pagine:31–43/volume:365
Prostate cancer is the most common malignant tumors in men but prostate Magnetic Resonance Imaging (MRI) analysis remains challenging. Besides whole prostate gland segmentation, the capability to differentiate between the blurry boundary of the Centr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5a61985bdd1937c350efeb9c8325061e
http://hdl.handle.net/10447/391677
http://hdl.handle.net/10447/391677