Zobrazeno 1 - 10
of 33 442
pro vyhledávání: '"Ryser A"'
Autor:
Montgomery, Richard
A Latin square of order $n$ is an $n$ by $n$ grid filled using $n$ symbols so that each symbol appears exactly once in each row and column. A transversal in a Latin square is a collection of cells which share no symbol, row or column. The Ryser-Brual
Externí odkaz:
http://arxiv.org/abs/2310.19779
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We study multigraphs whose edge-sets are the union of three perfect matchings, $M_1$, $M_2$, and $M_3$. Given such a graph $G$ and any $a_1,a_2,a_3\in \mathbb{N}$ with $a_1+a_2+a_3\leq n-2$, we show there exists a matching $M$ of $G$ with $|M\cap M_i
Externí odkaz:
http://arxiv.org/abs/2212.03100
Autor:
Bahmanian, Amin
In 1951, Ryser showed that an $n\times n$ array $L$ whose top left $r\times s$ subarray is filled with $n$ different symbols, each occurring at most once in each row and at most once in each column, can be completed to a latin square of order $n$ if
Externí odkaz:
http://arxiv.org/abs/2209.09100
Autor:
Parulekar, Tushar D.1 (AUTHOR), Sane, Sharad S.2 (AUTHOR) ssane@cmi.ac.in
Publikováno v:
Journal of Combinatorial Designs. May2020, Vol. 28 Issue 5, p349-357. 9p.
Autor:
Ávila, Adrián Vázquez
A famous conjecture of Ryser states that any $r$-partite set system has transversal number at most $r-1$ times their matching number. This conjecture is only known to be true for $r\leq3$ in general, for $r\leq5$ if the set system is intersecting, an
Externí odkaz:
http://arxiv.org/abs/2108.01108
Autor:
AKARSU, Emek DEMİRCİ1 emek.akarsu@erdogan.edu.tr, ÖZTÜRK, Safiye1 k.ozturk245@gmail.com
Publikováno v:
Sakarya University Journal of Science (SAUJS) / Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. Apr2022, Vol. 26 Issue 2, p241-248. 8p.
Based on the Gale-Ryser theorem for the existence of suitable $(0,1)$-matrices for different partitions of a natural number, we revisit the classical result of G. G. Lorentz regarding the characterization of a plane measurable set, in terms of its cr
Externí odkaz:
http://arxiv.org/abs/2103.04292
Autor:
Parulekar, Tushar, Sane, Sharad
A Ryser design $\mathcal{D}$ on $v$ points is a collection of $v$ proper subsets (called blocks) of a point-set with $v$ points such that every two blocks intersect each other in $\lambda$ points (and $\lambda < v$ is a fixed number) and there are at
Externí odkaz:
http://arxiv.org/abs/1911.06497
Autor:
Parulekar, Tushar D., Sane, Sharad S.
A Ryser design $\mathcal{D}$ on $v$ points is a collection of $v$ proper subsets (called blocks) of a point-set with $v$ points satisfying (i) every two blocks intersect each other in $\lambda$ points for a fixed $\lambda < v$ (ii) there are at least
Externí odkaz:
http://arxiv.org/abs/1909.03504