Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Ryosuke Kohita"'
Publikováno v:
Journal of Natural Language Processing. 29:1198-1232
Autor:
Ryosuke Kohita, Daiki Kimura, Asim Munawar, Michiaki Tatsubori, Akifumi Wachi, Subhajit Chaudhury
Publikováno v:
ACL/IJCNLP (Findings)
Scopus-Elsevier
Scopus-Elsevier
Publikováno v:
EMNLP (1)
Humans can learn structural properties about a word from minimal experience, and deploy their learned syntactic representations uniformly in different grammatical contexts. We assess the ability of modern neural language models to reproduce this beha
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4c67cc309c387531ad068fbe5ff1b56a
http://arxiv.org/abs/2010.05725
http://arxiv.org/abs/2010.05725
Publikováno v:
ACL
We propose a methodology to construct a term dictionary for text analytics through an interactive process between a human and a machine, which helps the creation of flexible dictionaries with precise granularity required in typical text analysis. Thi
Publikováno v:
EMNLP (1)
Unsupervised methods are promising for abstractive text summarization in that the parallel corpora is not required. However, their performance is still far from being satisfied, therefore research on promising solutions is on-going. In this paper, we
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::07cadb5d5f9e2c9ec5ec766a85560386
Publikováno v:
Proceedings of the Workshop on the Relevance of Linguistic Structure in Neural Architectures for NLP.
This paper demonstrates a neural parser implementation suitable for consistently head-final languages such as Japanese. Unlike the transition- and graph-based algorithms in most state-of-the-art parsers, our parser directly selects the head word of a
Multilingual Back-and-Forth Conversion between Content and Function Head for Easy Dependency Parsing
Publikováno v:
EACL (2)
Universal Dependencies (UD) is becoming a standard annotation scheme cross-linguistically, but it is argued that this scheme centering on content words is harder to parse than the conventional one centering on function words. To improve the parsabili
Autor:
Daiki Kimura, Michiaki Tatsubori, Subhajit Chaudhury, Alexander G. Gray, Ryosuke Kohita, Akifumi Wachi, Don Joven Agravante, Asim Munawar, Masaki Ono
Publikováno v:
Scopus-Elsevier
We present Logical Optimal Actions (LOA), an action decision architecture of reinforcement learning applications with a neuro-symbolic framework which is a combination of neural network and symbolic knowledge acquisition approach for natural language
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::428cf6995847bc1fb34bdde06108eb43
http://www.scopus.com/inward/record.url?eid=2-s2.0-85118932769&partnerID=MN8TOARS
http://www.scopus.com/inward/record.url?eid=2-s2.0-85118932769&partnerID=MN8TOARS