Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Ryomei Iwasa"'
Publikováno v:
Elmanto, E, Hoyois, M, Iwasa, R & Kelly, S 2021, ' Cdh descent, cdarc descent, and Milnor excision ', Mathematische Annalen, vol. 379, pp. 1011–1045 . https://doi.org/10.1007/s00208-020-02083-5
We give necessary and sufficient conditions for a cdh sheaf to satisfy Milnor excision, following ideas of Bhatt and Mathew. Along the way, we show that the cdh infinity-topos of a quasi-compact quasi-separated scheme of finite valuative dimension is
Autor:
Ryomei Iwasa
Publikováno v:
Journal of Pure and Applied Algebra. 223:48-71
We study relative $K_0$ of exact categories and triangulated categories. As an application, we construct a cycle class map from Chow groups with modulus to relative $K_0$.
20 pages, final version, to appear in Journal of Pure and Applied Algebra
20 pages, final version, to appear in Journal of Pure and Applied Algebra
Autor:
Ryomei Iwasa, Wataru Kai
Publikováno v:
Iwasa, R & Kai, W 2021, ' Isomorphisms up to Bounded Torsion between Relative K o-Groups and Chow Groups with Modulus ', Journal of the Institute of Mathematics of Jussieu, vol. 20, no. 6, pp. 1947–1968 . https://doi.org/10.1017/S1474748020000055
The purpose of this note is to establish isomorphisms up to bounded torsion between relative $K_{0}$-groups and Chow groups with modulus as defined by Binda and Saito.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::655bf101311b32c5053a1a01e2d03dd3
https://curis.ku.dk/ws/files/292139966/ISOMORPHISMS_UP_TO_BOUNDED_TORSION_BETWEEN.pdf
https://curis.ku.dk/ws/files/292139966/ISOMORPHISMS_UP_TO_BOUNDED_TORSION_BETWEEN.pdf
We prove that the $\infty$-category of motivic spectra satisfies Milnor excision: if $A\to B$ is a morphism of commutative rings sending an ideal $I\subset A$ isomorphically onto an ideal of $B$, then a motivic spectrum over $A$ is equivalent to a pa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0cf723cf263fb98e13fa4d29bc4043df
http://arxiv.org/abs/2004.12098
http://arxiv.org/abs/2004.12098
Autor:
Wataru Kai, Ryomei Iwasa
In this paper, we construct Chern classes from the relative $K$-theory of modulus pairs to the relative motivic cohomology defined by Binda-Saito. An application to relative motivic cohomology of henselian dvr is given.
Compatible numbering (sec
Compatible numbering (sec
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0d56dbe8d4a1493a9959affdac51b9d8
http://arxiv.org/abs/1611.07882
http://arxiv.org/abs/1611.07882
Autor:
Ryomei Iwasa
Publikováno v:
Iwasa, R 2020, ' Homology pro stability for tor-unital pro rings ', Homology, Homotopy and Applications, vol. 22, no. 1, pp. 343-374 . https://doi.org/10.4310/HHA.2020.v22.n1.a20
Let $\{A_m\}$ be a pro system of associative commutative, not necessarily unital, rings. Assume that the pro systems $\{\mathrm{Tor}^{\mathbb{Z}\ltimes A_m}_i(\mathbb{Z},\mathbb{Z})\}_m$ vanish for all $i>0$. Then we prove that the sequence \[ \{H_l(
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::22dbbf6e145f674133d7642b44b0f8b5