Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Ryo Kashima"'
Autor:
Ryo Kashima, Kento Takagi
Publikováno v:
Mathematical Logic Quarterly. 66:438-447
Autor:
Shinnosuke Fukuyama, Koji Hashimoto, Zenta Kato, Koichi Izumiya, Kumagai Naokazu, Kohei Tatsumi, Ryo Kashima
Publikováno v:
Applied Surface Science. 388:640-644
For oxygen formation without forming chlorine in seawater electrolysis for hydrogen production we have been using the anode consisting of three layers of MnO2-type multiple oxide catalyst, intermediate layer and titanium substrate. The intermediate l
Publikováno v:
Studia Logica. 103:1225-1244
The third author gave a natural deduction style proof system called the $${{\lambda}{\rho}}$$??-calculus for implicational fragment of classical logic in (Komori, Tsukuba J Math 37:307---320, 2013). In (Matsuda, Intuitionistic fragment of the $${{\la
Autor:
Ryo Kashima
Publikováno v:
Philosophical Logic: Current Trends in Asia ISBN: 9789811063541
We give an alternative proof of (a slightly strong form of) the completeness of two second order propositional intuitionistic logics with respect to Kripke models. One is the logic having the full comprehension axiom, and the other has the constant d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5dc721845de579fc86518c64c465341d
https://doi.org/10.1007/978-981-10-6355-8_9
https://doi.org/10.1007/978-981-10-6355-8_9
Autor:
Ryo Kashima
Publikováno v:
Journal of Logic and Computation. 24:117-133
Autor:
Ryo Kashima, Keishi Okamoto
Publikováno v:
Journal of Logic and Computation. 18(No. 4):497-507
There is no recursive axiomatization of first-order modal μ-calculus that is complete with respect to usual Kripke models. Then we introduce ‘general’ models, and we prove that the natural axiom system of first-order modal μ-calculus is complet
Autor:
Ryo Ishigaki, Ryo Kashima
Publikováno v:
Logic Journal of the IGPL. 16(No. 2):155-174
Autor:
Ryo Kashima, Ichiro Hasuo
Publikováno v:
Logic Journal of IGPL. 11:615-646
This paper considers Kripke completeness of Nelson’s constructive predicate logic N3 and its several variants. N3 is an extension of intuitionistic predicate logic Int by an contructive negation operator ∼ called strong negation. The variants of
Autor:
Ryo Kashima
Publikováno v:
MLQ. 49:401-414
The semilattice relevant logics ∪R, ∪T, ∪RW, and ∪TW (slightly different from the orthodox relevant logics R, T, RW, and TW) are defined by semilattice models in which conjunction and disjunction are interpreted in a natural way. For each of
Autor:
Ryo Kashima
Publikováno v:
Logic Journal of the IGPL. 8(6):761-785