Zobrazeno 1 - 10
of 79
pro vyhledávání: '"Ryo Ikehata"'
Publikováno v:
Journal of Differential Equations. 311:188-228
We consider a wave equation with a nonlocal logarithmic damping depending on a small parameter $\theta \in (0,1/2)$. This research is a counter part of that was initiated by Charao-D'Abbicco-Ikehata considered in [5] for the large parameter case $\th
Autor:
Wenhui Chen, Ryo Ikehata
Publikováno v:
Journal of Differential Equations. 292:176-219
In this paper, we study the Cauchy problem for the linear and semilinear Moore-Gibson-Thompson (MGT) equation in the dissipative case. Concerning the linear MGT model, by utilizing WKB analysis associated with Fourier analysis, we derive some L 2 est
Publikováno v:
Communications on Pure & Applied Analysis. 19:4433-4454
In this work we study asymptotic properties of global solutions for an initial value problem of a second order fractional differential equation with structural damping. The evolution equation considered includes plate equation problems. We show asymp
Autor:
Hiroshi Takeda, Ryo Ikehata
Publikováno v:
Funkcialaj Ekvacioj. 63:133-152
We consider the Cauchy problem for wave equations with unbounded damping coefficients in the whole space. For a general class of unbounded damping coefficients, we derive uniform total energy decay estimates together with a unique existence result of
Autor:
Wenhui Chen, Ryo Ikehata
In this paper, we study the Cauchy problem for a wave equation with general strong damping $-\mu(|D|)\Delta u_t$ motivated by [Tao, Anal. PDE (2009)] and [Ebert-Girardi-Reissig, Math. Ann. (2020)]. By employing energy methods in the Fourier space and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ad4c82de2f9be052b567d2e5a614b301
http://arxiv.org/abs/2112.02795
http://arxiv.org/abs/2112.02795
Autor:
Ryo Ikehata1 ikehatar@hiroshima-u.ac.jp
Publikováno v:
Azerbaijan Journal of Mathematics. Jul2019, Vol. 9 Issue 2, p150-165. 16p.
Autor:
Hironori Michihisa, Ryo Ikehata
Publikováno v:
Asymptotic Analysis. 114:19-36
In this report we obtain higher order asymptotic expansions of solutions to wave equations with frictional and viscoelastic damping terms. Although the diffusion phenomena are dominant, differences between the solutions we deal with and those of heat
Autor:
Marcello D'Abbicco, Ryo Ikehata
Publikováno v:
Mathematical Methods in the Applied Sciences. 42:2287-2301
Autor:
Shingo Kitazaki, Ryo Ikehata
Publikováno v:
Evolution Equations & Control Theory. 8:825-846
We consider the Cauchy problem in \begin{document}$ {\bf R}^{n} $\end{document} for some wave equations with double damping terms, that is, one is the frictional damping \begin{document}$ u_{t}(t, x) $\end{document} and the other is very strong struc
We introduce a new model of the logarithmic type of wave like plate equation with a nonlocal logarithmic damping mechanism. We consider the Cauchy problem for this new model in the whole space, and study the asymptotic profile and optimal decay rates
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f826325d85d97258e0900f185f027550
http://arxiv.org/abs/2104.08468
http://arxiv.org/abs/2104.08468