Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Ryley McConkey"'
Publikováno v:
Scientific Data, Vol 8, Iss 1, Pp 1-14 (2021)
Measurement(s) velocity fields • pressure fields • turbulence fields • related gradients Technology Type(s) numerical simulation Factor Type(s) turbulence model • flow geometry Machine-accessible metadata file describing the reported data: ht
Externí odkaz:
https://doaj.org/article/c0400f1e8dca4cd6bccf1cb3ff193f14
Publikováno v:
Energies, Vol 16, Iss 11, p 4440 (2023)
This study presents a data-driven approach for generating vortex-shedding maps, which are vital for predicting flow structures in vortex-induced vibration (VIV) wind energy extraction devices, while addressing the computational and complexity limitat
Externí odkaz:
https://doaj.org/article/313b9830a37941ca96ac5a510b2fe90d
Publikováno v:
Energies, Vol 15, Iss 22, p 8719 (2022)
A comprehensive review of modelling techniques for the flow-induced vibration (FIV) of bluff bodies is presented. This phenomenology involves bidirectional fluid–structure interaction (FSI) coupled with non-linear dynamics. In addition to experimen
Externí odkaz:
https://doaj.org/article/2108e01f83ae44fd84d683ffd536b4b1
Publikováno v:
Applied Mathematical Modelling. 117:652-686
Several machine learning frameworks for augmenting turbulence closure models have been recently proposed. However, the generalizability of an augmented turbulence model remains an open question. We investigate this question by systematically varying
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e5e19c1096fbb96f7a430aea8a996dd6
http://arxiv.org/abs/2206.05226
http://arxiv.org/abs/2206.05226
Publikováno v:
Scientific Data
Scientific Data, Vol 8, Iss 1, Pp 1-14 (2021)
Scientific Data, Vol 8, Iss 1, Pp 1-14 (2021)
The recent surge in machine learning augmented turbulence modelling is a promising approach for addressing the limitations of Reynolds-averaged Navier-Stokes (RANS) models. This work presents the development of the first open-source dataset, curated
Publikováno v:
Journal of Physics: Conference Series. 2141:012009
This study presents an effective strategy that applies machine learning methods to classify vortex shedding modes produced by the oscillating cylinder of a bladeless wind turbine. A 2-dimensional computational fluid dynamic (CFD) simulation using Ope