Zobrazeno 1 - 10
of 198
pro vyhledávání: '"Ryjáček Zdeněk"'
We show that every $3$-connected $\{K_{1,3},\Gamma_3\}$-free graph is Hamilton-connected, where $\Gamma_3$ is the graph obtained by joining two vertex-disjoint triangles with a path of length $3$. This resolves one of the two last open cases in the c
Externí odkaz:
http://arxiv.org/abs/2410.18309
We introduce a closure technique for Hamilton-connectedness of $\{K_{1,3},\Gamma_3\}$-free graphs, where $\Gamma_3$ is the graph obtained by joining two vertex-disjoint triangles with a path of length $3$. The closure turns a claw-free graph into a l
Externí odkaz:
http://arxiv.org/abs/2406.03036
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 33, Iss 1, Pp 203-215 (2013)
For an integer k ≥ 1, we say that a (finite simple undirected) graph G is k-distance-locally disconnected, or simply k-locally disconnected if, for any x ∈ V (G), the set of vertices at distance at least 1 and at most k from x induces in G a disc
Externí odkaz:
https://doaj.org/article/a0f7f5976bee479ebe7ff97efa9c47c2
Publikováno v:
In Discrete Mathematics November 2024 347(11)
Publikováno v:
In Discrete Mathematics February 2025 348(2)
Autor:
Brause, Christoph, Doan, Trung Duy, Holub, Přemysl, Kabela, Adam, Ryjáček, Zdeněk, Schiermeyer, Ingo, Vrána, Petr
For every graph $X$, we consider the class of all connected $\{K_{1,3}, X\}$-free graphs which are distinct from an odd cycle and have independence number at least $4$, and we show that all graphs in the class are perfect if and only if $X$ is an ind
Externí odkaz:
http://arxiv.org/abs/2102.08783
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Brause, Christoph, Holub, Přemysl, Kabela, Adam, Ryjáček, Zdeněk, Schiermeyer, Ingo, Vrána, Petr
Considering connected $K_{1,3}$-free graphs with independence number at least $3$, Chudnovsky and Seymour (2010) showed that every such graph, say $G$, is $2\omega$-colourable where $\omega$ denotes the clique number of $G$. We study $(K_{1,3}, Y)$-f
Externí odkaz:
http://arxiv.org/abs/1903.09403