Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Rygiel, Patryk"'
Autor:
Suk, Julian, Nannini, Guido, Rygiel, Patryk, Brune, Christoph, Pontone, Gianluca, Redaelli, Alberto, Wolterink, Jelmer M.
Cardiovascular hemodynamic fields provide valuable medical decision markers for coronary artery disease. Computational fluid dynamics (CFD) is the gold standard for accurate, non-invasive evaluation of these quantities in vivo. In this work, we propo
Externí odkaz:
http://arxiv.org/abs/2410.11920
Autor:
Bernárdez, Guillermo, Telyatnikov, Lev, Montagna, Marco, Baccini, Federica, Papillon, Mathilde, Ferriol-Galmés, Miquel, Hajij, Mustafa, Papamarkou, Theodore, Bucarelli, Maria Sofia, Zaghen, Olga, Mathe, Johan, Myers, Audun, Mahan, Scott, Lillemark, Hansen, Vadgama, Sharvaree, Bekkers, Erik, Doster, Tim, Emerson, Tegan, Kvinge, Henry, Agate, Katrina, Ahmed, Nesreen K, Bai, Pengfei, Banf, Michael, Battiloro, Claudio, Beketov, Maxim, Bogdan, Paul, Carrasco, Martin, Cavallo, Andrea, Choi, Yun Young, Dasoulas, George, Elphick, Matouš, Escalona, Giordan, Filipiak, Dominik, Fritze, Halley, Gebhart, Thomas, Gil-Sorribes, Manel, Goomanee, Salvish, Guallar, Victor, Imasheva, Liliya, Irimia, Andrei, Jin, Hongwei, Johnson, Graham, Kanakaris, Nikos, Koloski, Boshko, Kovač, Veljko, Lecha, Manuel, Lee, Minho, Leroy, Pierrick, Long, Theodore, Magai, German, Martinez, Alvaro, Masden, Marissa, Mežnar, Sebastian, Miquel-Oliver, Bertran, Molina, Alexis, Nikitin, Alexander, Nurisso, Marco, Piekenbrock, Matt, Qin, Yu, Rygiel, Patryk, Salatiello, Alessandro, Schattauer, Max, Snopov, Pavel, Suk, Julian, Sánchez, Valentina, Tec, Mauricio, Vaccarino, Francesco, Verhellen, Jonas, Wantiez, Frederic, Weers, Alexander, Zajec, Patrik, Škrlj, Blaž, Miolane, Nina
This paper describes the 2nd edition of the ICML Topological Deep Learning Challenge that was hosted within the ICML 2024 ELLIS Workshop on Geometry-grounded Representation Learning and Generative Modeling (GRaM). The challenge focused on the problem
Externí odkaz:
http://arxiv.org/abs/2409.05211
Autor:
Garzia, Simone, Rygiel, Patryk, Dummer, Sven, Cademartiri, Filippo, Celi, Simona, Wolterink, Jelmer M.
Time-resolved three-dimensional flow MRI (4D flow MRI) provides a unique non-invasive solution to visualize and quantify hemodynamics in blood vessels such as the aortic arch. However, most current analysis methods for arterial 4D flow MRI use static
Externí odkaz:
http://arxiv.org/abs/2407.20728
Autor:
Rygiel, Patryk
Coronary artery disease (CAD) is one of the most common causes of death in the European Union and the USA. The crucial biomarker in its diagnosis is called Fractional Flow Reserve (FFR) and its in-vivo measurement is obtained via an invasive diagnost
Externí odkaz:
http://arxiv.org/abs/2405.12224
Personalized 3D vascular models can aid in a range of diagnostic, prognostic, and treatment-planning tasks relevant to cardiovascular disease management. Deep learning provides a means to obtain such models automatically from image data. Ideally, a u
Externí odkaz:
http://arxiv.org/abs/2403.15314