Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Ryan Kiros"'
Publikováno v:
J Am Med Inform Assoc
Objective De-identification is a fundamental task in electronic health records to remove protected health information entities. Deep learning models have proven to be promising tools to automate de-identification processes. However, when the target d
Publikováno v:
ACM Transactions on Interactive Intelligent Systems. 5:1-36
Semi-structured documents are a common type of data containing free text in natural language (unstructured data) as well as additional information about the document, or meta-data, typically following a schema or controlled vocabulary (structured dat
Autor:
Pim A. de Jong, Raúl San José Estépar, Marius Staring, Valery Naranjo, Daniel Jimenez-Carretero, Christina Stöcker, Mathias Prokop, Maciej Orkisz, Catalin Fetita, Christophe Lefevre, Arantza Campo, Changyan Xiao, Bram van Ginneken, Karteek Popuri, Wenzhe Xue, Erik Smistad, Dennis Bosboom, Andres Santos, Michael Pienn, Carlos Ortiz-de-Solorzano, Michael Helmberger, Martin Urschler, James C. Ross, Kamuran A. Kadipasaoglu, Dana Cobzas, Devrim Unay, Rina D. Rudyanto, Hans Meine, Ryan Kiros, Eva M. van Rikxoort, Frank Lindseth, Markus Hüllebrand, Berend C. Stoel, Maria J. Ledesma-Carbayo, Amir Hossein Foruzan, Sjoerd Kerkstra, George R. Washko, Arrate Muñoz-Barrutia, Pierre Yves Brillet, Xiangjun Zhu, Anna Fabijańska, Ilkay Oksuz, Fernando L opez Mir, Eliseo Villanueva, Anne C. Elster, Juan Carlos Prieto, Marcela Hernández Hoyos, Jianming Liang
Publikováno v:
Medical Image Analysis
Medical Image Analysis, Elsevier, 2014, 18 (7), pp.1217-1232
Medical Image Analysis, 18, 1217-1232
Medical Image Analysis, 18, pp. 1217-1232
Medical Image Analysis, 18(7), 1217-1232
HAL
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instname
Medical Image Analysis, Elsevier, 2014, 18 (7), pp.1217-1232
Medical Image Analysis, 18, 1217-1232
Medical Image Analysis, 18, pp. 1217-1232
Medical Image Analysis, 18(7), 1217-1232
HAL
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instname
Contains fulltext : 137671.pdf (Publisher’s version ) (Open Access) The {VESSEL12} ({VES}sel {SE}mentation in the {L}ung) challenge objectively compares the performance of different algorithms to identify vessels in thoracic computed tomography ({C
Autor:
Raquel Urtasun, Ryan Kiros, Richard S. Zemel, Sanja Fidler, Yukun Zhu, Ruslan Salakhutdinov, Antonio Torralba
Publikováno v:
ICCV
arXiv
arXiv
Books are a rich source of both fine-grained information, how a character, an object or a scene looks like, as well as high-level semantics, what someone is thinking, feeling and how these states evolve through a story. This paper aims to align books
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b5566c4ec742e971cc102bbb8108ed6e
http://arxiv.org/abs/1506.06724
http://arxiv.org/abs/1506.06724
Publikováno v:
Machine Learning in Medical Imaging ISBN: 9783319105802
MLMI
MLMI
In this work we propose a feature-based segmentation approach that is domain independent. While most existing approaches are based on application-specific hand-crafted features, we propose a framework for learning features from data itself at multipl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::aff6cced9d886cbe5daaa748cf65f54b
https://doi.org/10.1007/978-3-319-10581-9_4
https://doi.org/10.1007/978-3-319-10581-9_4
Publikováno v:
Rough Sets and Current Trends in Computing ISBN: 9783642321146
RSCTC
RSCTC
In this article we describe the approach we applied for the JRS 2012 Data Mining Competition. The task of the competition was the multi-labelled classification of biomedical documents. Our method is motivated by recent work in the machine learning an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3f14aefdeee1a4ff5eb60c36e3c1b752
https://doi.org/10.1007/978-3-642-32115-3_55
https://doi.org/10.1007/978-3-642-32115-3_55