Zobrazeno 1 - 10
of 94
pro vyhledávání: '"Ryan K L Ko"'
Publikováno v:
Crime Science, Vol 9, Iss 1, Pp 1-26 (2020)
Abstract Objective This research uses crime scripts to understand adult retribution-style image-based sexual abuse (RS-IBSA) offender decision-making and offending in offline and online environments. We explain the crime-commission process of adult R
Externí odkaz:
https://doaj.org/article/9935a094ff7d48a4b338e750e56099c7
Publikováno v:
Frontiers in Big Data, Vol 5 (2022)
Externí odkaz:
https://doaj.org/article/e8563e6adeb14ce68aab9a0019617f56
Publikováno v:
IEEE Transactions on Smart Grid. 13:4957-4960
Publikováno v:
Journal of Intelligent Information Systems. 60:377-405
The advent of Industry 4.0 has led to a rapid increase in cyber attacks on industrial systems and processes, particularly on Industrial Control Systems (ICS). These systems are increasingly becoming prime targets for cyber criminals and nation-states
Autor:
Yi Cui, Feifei Bai, Ruifeng Yan, Tapan Saha, Mehdi Mosadeghy, Hongzhi Yin, Ryan K. L. Ko, Yilu Liu
Publikováno v:
IEEE Transactions on Smart Grid. 13:1658-1661
Publikováno v:
IEEE Transactions on Dependable and Secure Computing. :1-17
Autor:
Minjune Kim, Jin-Hee Cho, Hyuk Lim, Terrence J. Moore, Frederica F. Nelson, Ryan K. L. Ko, Dan Dongseong Kim
Publikováno v:
2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS).
Publikováno v:
Emerging Trends in Cybersecurity Applications ISBN: 9783031096396
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9a249254f675149e9862087b6328bb9b
https://doi.org/10.1007/978-3-031-09640-2_14
https://doi.org/10.1007/978-3-031-09640-2_14
Publikováno v:
IEEE Transactions on Smart Grid. 12:4577-4580
This letter proposes a hybrid approach combining Self-Adaptive Mathematical Morphology (SAMM) and Time-Frequency (TF) techniques to authenticate the source information of Distribution Synchrophasors (DS) within near-range locations. The SAMM can adap
Publikováno v:
IEEE Intelligent Systems. 36:16-24
Coupling learning is designed to estimate, discover, and extract the interactions and relationships among learning components. It provides insights into complex interactive data, and has been extensively incorporated into recommender systems to enhan