Zobrazeno 1 - 10
of 87
pro vyhledávání: '"Ryan, Nathan C."'
Publikováno v:
The Ramanujan Journal (2025)
In this article we exhibit new explicit families of congruences for the overpartition function, making effective the existence results given previously by Treneer. We give infinite families of congruences modulo $m$ for $m = 5, 7, 11$, and finite fam
Externí odkaz:
http://arxiv.org/abs/2309.01792
Autor:
Barquero-Sanchez, Adrian, Collado-Valverde, Gabriel, Ryan, Nathan C., Salas-Jimenez, Eduardo, Sirolli, Nicolás, Villegas-Morales, Jean Carlos
In this paper we develop a method to calculate the overpartition function efficiently using a Hardy-Rademacher-Ramanujan type formula, and we use this method to find many new Ramanujan-style congruences, whose existence is predicted by Treneer and a
Externí odkaz:
http://arxiv.org/abs/2303.15895
Let $E$ be an elliptic curve over $\mathbf{Q}$. We conjecture asymptotic estimates for the number of vanishings of $L(E,1,\chi)$ as $\chi$ varies over all primitive Dirichlet characters of orders 4 and 6, subject to a mild hypothesis on $E$. Our conj
Externí odkaz:
http://arxiv.org/abs/2301.05329
The Pennsylvania Additive Classification Tool (PACT) is a carceral algorithm used by the Pennsylvania Department of Corrections in order to determine the security level for an incarcerated person in the state's prison system. For a newly incarcerated
Externí odkaz:
http://arxiv.org/abs/2112.05860
Scholars have focused on algorithms used during sentencing, bail, and parole, but little work explores what we call carceral algorithms that are used during incarceration. This paper is focused on the Pennsylvania Additive Classification Tool (PACT)
Externí odkaz:
http://arxiv.org/abs/2112.03240
Much attention has been paid to algorithms related to sentencing, the setting of bail, parole decisions and recidivism while less attention has been paid to carceral algorithms, those algorithms used to determine an incarcerated individual's lived ex
Externí odkaz:
http://arxiv.org/abs/2112.00301
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The values of the partition function, and more generally the Fourier coefficients of many modular forms, are known to satisfy certain congruences. Results given by Ahlgren and Ono for the partition function and by Treneer for more general Fourier coe
Externí odkaz:
http://arxiv.org/abs/1911.05799
We construct certain $\theta$-series associated to number fields and prove that for number fields of degree less than equal to 4, these $\theta$-series are number field invariants. We also investigate whether or not the collection of $\theta$-series
Externí odkaz:
http://arxiv.org/abs/1910.00202
Publikováno v:
Open Book Series 2 (2019) 207-220
The standard approach to evaluate Hecke eigenvalues of a Siegel modular eigenform F is to determine a large number of Fourier coefficients of F and then compute the Hecke action on those coefficients. We present a new method based on the numerical ev
Externí odkaz:
http://arxiv.org/abs/1806.01612