Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Rutten, Nina"'
Autor:
Rutten, Nina J., Kiselev, Arthemy V.
Publikováno v:
Journal of Physics: Conference Series (2019) Vol.1194, Paper 012095, 1-10
Consider the real vector space of formal sums of non-empty, finite unoriented graphs without multiple edges and loops. Let the vertices of graphs be unlabelled but let every graph $\gamma$ be endowed with an ordered set of edges $\mathsf{E}(\gamma)$.
Externí odkaz:
http://arxiv.org/abs/1811.10638
Publikováno v:
Physics of Particles and Nuclei (2018) Vol. 49, No. 5, 924--928
Kontsevich designed a scheme to generate infinitesimal symmetries $\dot{\mathcal{P}} = \mathcal{Q}(\mathcal{P})$ of Poisson brackets $\mathcal{P}$ on all affine manifolds $M^r$; every such deformation is encoded by oriented graphs on $n+2$ vertices a
Externí odkaz:
http://arxiv.org/abs/1712.05259
Publikováno v:
Journal of Physics: Conf. Series 965 (2018), Paper 012010, 12 pages
Let $P$ be a Poisson structure on a finite-dimensional affine real manifold. Can $P$ be deformed in such a way that it stays Poisson? The language of Kontsevich graphs provides a universal approach -- with respect to all affine Poisson manifolds -- t
Externí odkaz:
http://arxiv.org/abs/1710.02405
Publikováno v:
J. Nonlin. Math. Phys. (2017) Vol.24 Suppl.1, 157--173
The real vector space of non-oriented graphs is known to carry a differential graded Lie algebra structure. Cocycles in the Kontsevich graph complex, expressed using formal sums of graphs on $n$ vertices and $2n-2$ edges, induce -- under the orientat
Externí odkaz:
http://arxiv.org/abs/1710.00658