Zobrazeno 1 - 10
of 416
pro vyhledávání: '"Ruth F. Curtain"'
Publikováno v:
Systems & Control Letters. 146
Autor:
Fotis N. Koumboulis
Publikováno v:
Automatica. 33:1885-1897
The problem of input-output block decoupling of generalized state space systems, via a regular static state feedback law, is studied for the first time. The necessary and sufficient conditions for the problem to have a solution are established. The n
Autor:
LaSalle, J. P.
Publikováno v:
American Scientist, 1978 Sep 01. 66(5), 635-635.
Externí odkaz:
https://www.jstor.org/stable/27848930
Autor:
Russell, David L.
Publikováno v:
Bull. Amer. Math. Soc. (N.S.) 3 (1980), 724-728
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=project_eucl::66a5875b9449637b359e6e1e808e68a2
http://projecteuclid.org/euclid.bams/1183546477
http://projecteuclid.org/euclid.bams/1183546477
Autor:
George Weiss, Ruth F. Curtain
Publikováno v:
Mathematical control and related fields, 9(4), 643-671. AMER INST MATHEMATICAL SCIENCES-AIMS
The plant to be stabilized is a system node $\Sigma$ with generating triple $(A,B,C)$ and transfer function $\bf G$, where $A$ generates a contraction semigroup on the Hilbert space $X$. The control and observation operators $B$ and $C$ may be unboun
Autor:
A. Erdélyi
Publikováno v:
Proceedings of the Edinburgh Mathematical Society. 21:92-93
Autor:
Hans Zwart, Ruth F. Curtain
Publikováno v:
Introduction to Infinite-Dimensional Systems Theory ISBN: 9781071605882
For the state linear system as introduced in Chap. 6, two input-output maps are introduced. The first is in time domain, and writes the output y as a convolution of the input with the impulse response. The second one is the transfer function, which i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7ba271e64a18008d65125312302c6be2
https://doi.org/10.1007/978-1-0716-0590-5_7
https://doi.org/10.1007/978-1-0716-0590-5_7
Autor:
Ruth F. Curtain, Hans Zwart
Publikováno v:
Introduction to Infinite-Dimensional Systems Theory ISBN: 9781071605882
In this chapter the system differential equation \(\dot{z}(t) = A z(t) + B u(t)\), \(y(t) = C z(t) + D u(t)\) is introduced. For this state linear system the concepts of controllability and observability are defined, and it shown that there are diffe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9400f0555cc44a1490234efca5965bf3
https://doi.org/10.1007/978-1-0716-0590-5_6
https://doi.org/10.1007/978-1-0716-0590-5_6
Autor:
Hans Zwart, Ruth F. Curtain
Publikováno v:
Introduction to Infinite-Dimensional Systems Theory ISBN: 9781071605882
One of the most important concepts of systems theory is that of stabilizability and its dual concept detectability. We characterise when a system with finitely many inputs is stabilizable. Additionally, we present tests for the stabilizability/detect
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f367eee0499f16060ee11cacc7facd95
https://doi.org/10.1007/978-1-0716-0590-5_8
https://doi.org/10.1007/978-1-0716-0590-5_8
Autor:
Ruth F. Curtain, Hans Zwart
Publikováno v:
Introduction to Infinite-Dimensional Systems Theory ISBN: 9781071605882
In the previous chapter we treated linear systems. In this chapter we study the semilinear differential equation \(\dot{z}(t) = A z(t) + f(z(t))\), with A the infinitesimal generator of strongly continuous semigroup. We do this for two cases, the fir
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::56b53ebd8e520985dc30fb2e82153c38
https://doi.org/10.1007/978-1-0716-0590-5_11
https://doi.org/10.1007/978-1-0716-0590-5_11