Zobrazeno 1 - 10
of 70
pro vyhledávání: '"Ruszel, Wioletta M."'
We show that a modification of the proof of our paper [CvELNR18], in the spirit of [FP81], shows delocalisation in the long-range Discrete Gaussian Chain, and generalisations thereof, for any decay power $\alpha>2$ and at all temperatures. The argume
Externí odkaz:
http://arxiv.org/abs/2401.17722
Publikováno v:
J Stat Phys 190, 171 (2023)
In this paper we study the properties of the centered (norm of the) gradient squared of the discrete Gaussian free field in $U_{\epsilon}=U/\epsilon\cap \mathbb{Z}^d$, $U\subset \mathbb{R}^d$ and $d\geq 2$. The covariance structure of the field is a
Externí odkaz:
http://arxiv.org/abs/2207.09401
Autor:
Ruszel, Wioletta M., Thacker, Debleena
Consider a generalized time-dependent P\'olya urn process defined as follows. Let $d\in \mathbb{N}$ be the number of urns/colors. At each time $n$, we distribute $\sigma_n$ balls randomly to the $d$ urns, proportionally to $f$, where $f$ is a valid r
Externí odkaz:
http://arxiv.org/abs/2201.12603
Autor:
Chiarini, Leandro, Ruszel, Wioletta M.
In this article, we study stochastic homogenization of non-homogeneous Gaussian free fields $\Xi^{g,{\bf a}} $ and bi-Laplacian fields $\Xi^{b,{\bf a}}$. They can be characterized as follows: for $f=\delta$ the solution $u$ of $\nabla \cdot \mathbf{a
Externí odkaz:
http://arxiv.org/abs/2201.12013
Autor:
Crawford, Nicolas, Ruszel, Wioletta M.
In this article we prove that a classical $XY$ model subjected to weak i.i.d. random field pointing in a fixed direction exhibits residual magnetic order in $\mathbb{Z}^2$ and aligns perpendicular to the random field direction. The paper is a sequel
Externí odkaz:
http://arxiv.org/abs/2111.00241
In this article, we study a class of lattice random variables in the domain of attraction of an $\alpha$-stable random variable with index $\alpha \in (0,2)$ which satisfy a truncated fractional Edgeworth expansion. Our results include studying the c
Externí odkaz:
http://arxiv.org/abs/2101.01609
Autor:
Ruszel, Wioletta M.
The divisible sandpile model is a fixed-energy continuous counterpart of the Abelian sandpile model. We start with a random initial configuration and redistribute mass deterministically. Under certain conditions the sandpile will stabilize. The assoc
Externí odkaz:
http://arxiv.org/abs/1903.06263
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this paper we complete the investigation of scaling limits of the odometer in divisible sandpiles on $d$-dimensional tori generalising the works Chiarini et al. (2018), Cipriani et al. (2017, 2018). Relaxing the assumption of independence of the w
Externí odkaz:
http://arxiv.org/abs/1810.06347
We show that in abelian sandpiles on infinite Galton-Watson trees, the probability that the total avalanche has more than $t$ topplings decays as $t^{-1/2}$. We prove both quenched and annealed bounds, under suitable moment conditions. Our proofs are
Externí odkaz:
http://arxiv.org/abs/1807.01809