Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Ruszel, W. M."'
In the present manuscript we address and solve for the first time a nonlocal discrete isoperimetric problem. We consider indeed a generalization of the classical perimeter, what we call a nonlocal bi-axial discrete perimeter, where, not only the exte
Externí odkaz:
http://arxiv.org/abs/2412.13005
We consider one-dimensional long-range spin models (usually called Dyson models), consisting of Ising ferromagnets with slowly decaying long-range pair potentials of the form $\frac{1}{|i-j|^{\alpha}}$ mainly focusing on the range of slow decays $1 <
Externí odkaz:
http://arxiv.org/abs/1702.02887
Publikováno v:
Chaos, Solitons, and Fractals 64,36-47, 2014
Cellular Automata are discrete-time dynamical systems on a spatially extended discrete space which provide paradigmatic examples of nonlinear phenomena. Their stochastic generalizations, i.e., Probabilistic Cellular Automata (PCA), are discrete time
Externí odkaz:
http://arxiv.org/abs/1307.8234
We review some recent developments in the study of Gibbs and non-Gibbs properties of transformed n-vector lattice and mean-field models under various transformations. Also, some new results for the loss and recovery of the Gibbs property of planar ro
Externí odkaz:
http://arxiv.org/abs/0812.1751
Autor:
van Enter, A. C. D., Ruszel, W. M.
We consider planar rotors (XY spins) in $\mathbb{Z}^d$, starting from an initial Gibbs measure and evolving with infinite-temperature stochastic (diffusive) dynamics. At intermediate times, if the system starts at low temperature, Gibbsianness can be
Externí odkaz:
http://arxiv.org/abs/0808.4092
Autor:
van Enter, A. C. D., Ruszel, W. M.
We study the Gibbsian character of time-evolved planar rotor systems on Z^d, d at least 2, in the transient regime, evolving with stochastic dynamics and starting with an initial Gibbs measure. We model the system by interacting Brownian diffusions,
Externí odkaz:
http://arxiv.org/abs/0711.3621
Autor:
van Enter, A. C. D., Ruszel, W. M.
We present a class of examples of nearest-neighbour, boubded-spin models, in which the low-temperature Gibbs measures do not converge as the temperature is lowered to zero, in any dimension.
Externí odkaz:
http://arxiv.org/abs/math-ph/0609024
Autor:
Roelly, Sylvie, Ruszel, W. M.
We consider infinite-dimensional diffusions where the interaction between the coordinates has a finite extent both in space and time. In particular, it is not supposed to be smooth or Markov. The initial state of the system is Gibbs, given by a stron
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______266::c130b7b7c7d9536477d36d0b2c7b2b39
https://publishup.uni-potsdam.de/frontdoor/index/index/docId/38181
https://publishup.uni-potsdam.de/frontdoor/index/index/docId/38181
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.