Zobrazeno 1 - 10
of 675
pro vyhledávání: '"Rupp G"'
Autor:
van Beveren, E., Rupp, G.
The bottomonium spectrum is the perfect testing ground for the confining potential and unitarisation effects. The bottom quark is about three times heavier than the charm quark, so that $b\bar{b}$ systems probe primarily the short-range part of that
Externí odkaz:
http://arxiv.org/abs/2302.07146
Publikováno v:
Phys. Rev. D 102, 054029 (2020)
An analysis is presented of elastic $P$-wave $\pi\pi$ phase shifts and inelasticities up to 2 GeV, aimed at identifying the corresponding $J^{PC}=1^{--}$ excited $\rho$ resonances and focusing on the $\rho(1250)$ vs. $\rho(1450)$ controversy. The app
Externí odkaz:
http://arxiv.org/abs/2009.06317
Publikováno v:
Acta Phys. Polon. Supp. 5 (2012) 1015-1020
Because of the controversial X(3872) meson's very close proximity to the $D^0\bar{D}^{*0}$ threshold, this charmonium-like resonance is often considered a meson-meson molecule. However, a molecular wave function must be essentially of a meson-meson t
Externí odkaz:
http://arxiv.org/abs/1209.1313
Publikováno v:
Acta Phys.Polon.Supp.3:983-990,2010
The X(3872) is studied as an axial-vector charmonium state in the multichannel framework of the Resonance-Spectrum-Expansion quark-meson model, previously applied to a variety of other puzzling mesonic resonances. Included are the open-charm pseudosc
Externí odkaz:
http://arxiv.org/abs/1005.2486
Publikováno v:
Acta Phys.Polon.Supp.2:431,2009
We study the puzzling vector meson X(2175) in a multichannel generalisation of the Resonance-Spectrum-Expansion model. Besides the usual P-wave pseudoscalar-pseudoscalar, pseudoscalar-vector, and vector-vector channels that couple to mesons with vect
Externí odkaz:
http://arxiv.org/abs/0905.3302
Publikováno v:
Z.Phys.C30:615-620,1986
A unitarized nonrelativistic meson model which is successful for the description of the heavy and light vector and pseudoscalar mesons yields, in its extension to the scalar mesons but for the same model parameters, a complete nonet below 1 GeV. In t
Externí odkaz:
http://arxiv.org/abs/0710.4067
Publikováno v:
Europhys.Lett.80:51001,2007
Light constituent quark masses and the corresponding dynamical quark masses are determined by data, the Quark-Level Linear $\sigma$ Model, and infrared QCD. This allows to define effective nonstrange and strange current quark masses which reproduce t
Externí odkaz:
http://arxiv.org/abs/0710.2273
Publikováno v:
Phys.Lett.B641:265-271,2006
Masses and widths of the four light scalar mesons $\sigma$, $\kappa$, $a_0$(980) and $f_0$(980) may be reproduced in a model where mesons scatter via a $q\bar{q}$ loop. A transition potential is used to couple mesons to $q\bar{q}$ at a radius of $\si
Externí odkaz:
http://arxiv.org/abs/hep-ph/0606022
Publikováno v:
J.Phys.G32:735-745,2006
Constituent quark masses can be determined quite well from experimental data in several ways and one can obtain fairly accurate values for all six $m_q$. The strong quark-meson coupling $g=2\pi /\sqrt{3}$ arises from the quark-level linear $\sigma$ m
Externí odkaz:
http://arxiv.org/abs/hep-ph/0603196
Publikováno v:
AIPConf.Proc.688:183-190,2003
By comparing SU(3)-breaking scales of linear mass formulae, it is shown that the lowest vector, axial-vector, and scalar mesons all have a $\bar{q}q$ configuration, while the ground-state octet and decuplet baryons are $qqq$. Also, the quark-level li
Externí odkaz:
http://arxiv.org/abs/hep-ph/0307003