Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Ruosteenoja, Eero"'
We prove a local H\"{o}lder estimate with an exponent $0<\delta<\frac 12$ for solutions of the dynamic programming principle $$u^\varepsilon (x) =\sum_{j=1}^n \alpha_j\inf_{\dim(S)=j}\sup_{\substack{v\in S\\ |v|=1}}\frac{ u^\varepsilon (x + \varepsil
Externí odkaz:
http://arxiv.org/abs/2112.12011
Autor:
Attouchi, Amal, Ruosteenoja, Eero
In this paper we consider viscosity solutions of a class of non-homogeneous singular parabolic equations $$\partial_t u-|Du|^\gamma\Delta_p^N u=f,$$ where $-1<\gamma<0$, $1
Externí odkaz:
http://arxiv.org/abs/1912.10075
Autor:
Høeg, Fredrik Arbo, Ruosteenoja, Eero
We show that value functions of a certain time-dependent control problem in $\Omega\times (0,T)$, with a continuous payoff $F$ on the parabolic boundary, converge uniformly to the viscosity solution of the parabolic dominative $p$-Laplace equation $$
Externí odkaz:
http://arxiv.org/abs/1903.08520
We prove an asymptotic Lipschitz estimate for value functions of tug-of-war games with varying probabilities defined in $\Omega\subset \mathbb R^n$. The method of the proof is based on a game-theoretic idea to estimate the value of a related game def
Externí odkaz:
http://arxiv.org/abs/1806.10838
Autor:
Attouchi, Amal, Ruosteenoja, Eero
We study a singular or degenerate equation in non-divergence form modeled by the $p$-Laplacian, $$-|Du|^\gamma\left(\Delta u+(p-2)\Delta_\infty^N u\right)=f\ \ \ \ \text{in}\ \ \ \Omega.$$ We investigate local $C^{1,\alpha}$ regularity of viscosity s
Externí odkaz:
http://arxiv.org/abs/1710.07506
We consider the normalized $p$-Poisson problem $$-\Delta^N_p u=f \qquad \text{in}\quad \Omega.$$ The normalized $p$-Laplacian $\Delta_p^{N}u:=|D u|^{2-p}\Delta_p u$ is in non-divergence form and arises for example from stochastic games. We prove $C^{
Externí odkaz:
http://arxiv.org/abs/1603.06391
Autor:
Parviainen, Mikko, Ruosteenoja, Eero
We study local regularity properties of value functions of time-dependent tug-of-war games. For games with constant probabilities we get local Lipschitz continuity. For more general games with probabilities depending on space and time we obtain H\"ol
Externí odkaz:
http://arxiv.org/abs/1512.02066
Autor:
Ruosteenoja, Eero
We prove local Lipschitz continuity and Harnack's inequality for value functions of the stochastic game tug-of-war with noise and running payoff. As a consequence, we obtain game-theoretic proofs for the same regularity properties for viscosity solut
Externí odkaz:
http://arxiv.org/abs/1407.0889
Autor:
Attouchi, Amal, Ruosteenoja, Eero
Publikováno v:
In Journal of Differential Equations 5 September 2018 265(5):1922-1961
Publikováno v:
Potential Analysis; Dec2023, Vol. 59 Issue 4, p1995-2015, 21p