Zobrazeno 1 - 10
of 1 052
pro vyhledávání: '"Runoff modelling"'
Autor:
András Dobai, András Hegedűs, János Vágó, Károly Zoltán Kovács, Anna Seres, Péter Pecsmány, Endre Dobos
Publikováno v:
Hungarian Geographical Bulletin, Vol 73, Iss 4, Pp 379-394 (2024)
The extreme precipitation resulting from climate change has been causing increasingly serious damage in populated areas over the past 10–15 years. The torrents of flash floods cause significant financial damage to both the natural environment and m
Externí odkaz:
https://doaj.org/article/fd8a0d0612c2405999e42b74c8e2a884
Publikováno v:
Journal of Hydroinformatics, Vol 26, Iss 4, Pp 835-852 (2024)
Streamflow information is crucial for effectively managing water resources. The declining number of active gauging stations in many rivers is a global concern, necessitating the need for reliable streamflow estimates. Deep learning techniques offer p
Externí odkaz:
https://doaj.org/article/37520f169c594993a5c201754bbb4a3f
Publikováno v:
Journal of Water and Climate Change, Vol 15, Iss 2, Pp 747-758 (2024)
The hyetograph represents the temporal spread of rainfall intensity occurring at a point or over a watershed during a storm. The importance of regionally derived/developed hyetographs and the pooled sets of categorical seasonal curves on intensity-du
Externí odkaz:
https://doaj.org/article/d3d798d53dde4213ab38ef002ee1a503
Some Remarks About Forward and Inverse Modelling in Hydrology, Within a General Conceptual Framework
Autor:
Mauro Giudici
Publikováno v:
Hydrology, Vol 11, Iss 11, p 189 (2024)
The solution to inverse problems is crucial for model calibration and to provide a good basis for model results to be reliable. This paper is based on a recently proposed conceptual framework for the development and application of mathematical models
Externí odkaz:
https://doaj.org/article/bd3fb47c43204ccdab6e34e730ebf0a9
Autor:
Priyamitra Munoth, Lalit Kumar Gehlot, P. L. Patel, Sumit Khandelwal, P. V. Timbadiya, Rohit Goyal
Publikováno v:
Water Supply, Vol 23, Iss 12, Pp 4891-4907 (2023)
The present study developed an integrated hydrologic model for sustainable utilisation and water management in two complex watersheds with varying physioclimatic features and reservoirs. The soil and water assessment tool (SWAT) is used for predictin
Externí odkaz:
https://doaj.org/article/f1ee03c6df794b1f997c8f04a0c66aa2
Autor:
Suroso Suroso, Purwanto Bekti Santoso, Stephen Birkinshaw, Chris Kilsby, Andras Bardossy, Edvin Aldrian
Publikováno v:
Journal of Hydroinformatics, Vol 25, Iss 3, Pp 797-814 (2023)
This study investigates the use of the Tropical Rainfall Measurement Mission's (TRMM) rainfall data for predicting water flows and flood events in three catchments on the island of Java, Indonesia, namely, Ciliwung, Citarum and Bengawan Solo. The She
Externí odkaz:
https://doaj.org/article/1d7324bf31e44f3d8f8f16f4b93de493
Publikováno v:
Results in Engineering, Vol 20, Iss , Pp 101571- (2023)
The purpose of the study was to use hierarchical clustering and Thiessen polygon algorithms to identify the significant rain gauge stations for flood forecasting at Sardar Sarovar Dam. Rainfall data from 2010 to 2018 was utilized to analyze the catch
Externí odkaz:
https://doaj.org/article/e57ca2b00382460dabf721e0477bf5cd
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Uludağ University Journal of The Faculty of Engineering, Vol 27, Iss 1, Pp 237-250 (2022)
Yağış-akış modelleri kapsamında ele alınan modeller içerisinden kavramsal modeller havza dinamiğini atanan parametreler yardımıyla benzeştirmeye çalışırken, kapalı kutu modelleri ise fiziksel süreci dikkate almadan veri işleme esas
Externí odkaz:
https://doaj.org/article/a6a0e35dc8e54fd295406a93d46e34c3
Autor:
Julian Koch, Raphael Schneider
Publikováno v:
GEUS Bulletin, Vol 49, Pp 1-7 (2022)
This study explores the application of long short-term memory (LSTM) networks to simulate runoff at the national scale of Denmark using data from 301 catchments. This is the first LSTM application on Danish data. The results were benchmarked against
Externí odkaz:
https://doaj.org/article/f9c10c20beae40a9b42dc36e9e6e3e1f