Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Ruixuan Luo"'
Autor:
Michael Lee, Jing Chen, Li Yao, Yu Chen, Yu Jiang, Feng Li, Xiubao Ren, Jun Guo, Bixia Tang, Chuanliang Cui, Gang Huang, Shuai Zhao, Zhihong Chi, Meng Qi, Xiaolu Tao, Quanli Gao, Xiaoshi Zhang, Meiyu Fang, Fei Zheng, Rongqing Li, Meijuan Gao, Ruixuan Luo, Rong Duan
Publikováno v:
Journal for ImmunoTherapy of Cancer, Vol 12, Iss 10 (2024)
Background HBM4003 is a novel anti-CTLA-4 heavy chain-only antibody, designed to enhance Treg ablation and antibody-dependent cell-mediated cytotoxicity while ensuring a manageable safety profile. This phase I trial investigated the safety, pharmacok
Externí odkaz:
https://doaj.org/article/999bac7efb2d43c483ff80494758b040
Previous studies demonstrate DNNs' vulnerability to adversarial examples and adversarial training can establish a defense to adversarial examples. In addition, recent studies show that deep neural networks also exhibit vulnerability to parameter corr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f52089799bee7628a49ce87d93c29b49
http://arxiv.org/abs/2109.02889
http://arxiv.org/abs/2109.02889
Publikováno v:
Findings of the Association for Computational Linguistics: EMNLP 2021.
We argue that the vulnerability of model parameters is of crucial value to the study of model robustness and generalization but little research has been devoted to understanding this matter. In this work, we propose an indicator to measure the robust
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c612d8fb1efccadae8dcb1564c225b52
http://arxiv.org/abs/2006.05620
http://arxiv.org/abs/2006.05620
Publikováno v:
Computer Vision – ECCV 2018 ISBN: 9783030012632
ECCV (14)
ECCV (14)
Modern CNN-based object detectors rely on bounding box regression and non-maximum suppression to localize objects. While the probabilities for class labels naturally reflect classification confidence, localization confidence is absent. This makes pro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3153b1ced9c4ca215df71ef27da03b24
https://doi.org/10.1007/978-3-030-01264-9_48
https://doi.org/10.1007/978-3-030-01264-9_48
Publikováno v:
IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.
Certain unusual cloud features visible over water in satellite images are caused by ship smoke stack pollution. Ship tracks form long, thin, complex features in satellite images. These features do not typically follow straight lines or other low-orde
Publikováno v:
IGARSS'97 1997 IEEE International Geoscience & Remote Sensing Symposium Proceedings Remote Sensing - A Scientific Vision for Sustainable Development; 1997, Issue 1, p160-160, 1p
Conference
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.