Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Ruiqin Fu"'
Publikováno v:
AIMS Mathematics, Vol 6, Iss 5, Pp 5401-5420 (2021)
Let G be a finite group. The reduced power graph of G is the undirected graph whose vertex set consists of all elements of G, and two distinct vertices x and y are adjacent if either ⟨x⟩⊂⟨y⟩ or ⟨y⟩⊂⟨x⟩. In this paper, we show that
Externí odkaz:
https://doaj.org/article/c038bdae6ec04599a0d63a9e2b3c2305
Publikováno v:
Indian Journal of Pure and Applied Mathematics. 53:222-227
Publikováno v:
International Journal of Number Theory. 17:1997-2008
Let [Formula: see text] be fixed positive integers such that [Formula: see text] is not a perfect square and [Formula: see text] is squarefree, and let [Formula: see text] denote the number of distinct prime divisors of [Formula: see text]. Let [Form
Publikováno v:
AIMS Mathematics, Vol 6, Iss 5, Pp 5401-5420 (2021)
Let $ G $ be a finite group. The reduced power graph of $ G $ is the undirected graph whose vertex set consists of all elements of $ G $, and two distinct vertices $ x $ and $ y $ are adjacent if either $ \langle x\rangle \subset \langle y\rangle $ o
Publikováno v:
Periodica Mathematica Hungarica. 81:275-283
Let $$(m,\ n)$$ be fixed positive integers such that $$m>n,\ \gcd (m,\ n)=1$$ and $$ mn\equiv 0 \pmod 2$$ . Then the triple $$(m^2-n^2,\ 2mn,\ m^2+n^2)$$ is called a primitive Pythagorean triple. In 1956, Jeśmanowicz (Wiadom Math 1(2):196–202, 195
Publikováno v:
Mediterranean Journal of Mathematics. 19
Publikováno v:
International Journal of Number Theory. 15:1069-1074
Let [Formula: see text] be a positive integer with [Formula: see text], and let [Formula: see text] be an odd prime. In this paper, by using certain properties of Pell’s equations and quartic diophantine equations with some elementary methods, we p
Publikováno v:
Czechoslovak Mathematical Journal. 69:853-862
Let p be a fixed odd prime. We combine some properties of quadratic and quartic Diophantine equations with elementary number theory methods to determine all integral points on the elliptic curve E: y2 = x3 − 4p2x. Further, let N(p) denote the numbe
Publikováno v:
Periodica Mathematica Hungarica. 79:86-93
Let p be an odd prime. By using a lower bound for linear forms in logarithms of two algebraic numbers, we prove that if $$p>10^{24}$$ , 2 is a primitive root module p and the least solution $$(u_1,\ v_1)$$ of Pell’s equation $$u^2-2(p-1)(p-2)v^2=1$