Zobrazeno 1 - 10
of 54
pro vyhledávání: '"Ruíz, Claudio"'
Autor:
Pita-Ruiz, Claudio
Publikováno v:
Communications in Mathematics, Volume 31 (2023), Issue 1 (November 22, 2022) cm:10327
We introduce poly-Bernoulli polynomials in two variables by using a generalization of Stirling numbers of the second kind that we studied in a previous work. We prove the bi-variate poly-Bernoulli polynomial version of some known results on standard
Externí odkaz:
http://arxiv.org/abs/2211.09278
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Journal of Wind Engineering & Industrial Aerodynamics February 2023 233
Autor:
Pita-Ruiz, Claudio
We consider generalized Stirling numbers of the second kind $% S_{a,b,r}^{\alpha_{s},\beta_{s},r_{s},p_{s}}\left( p,k\right) $, $% k=0,1,\ldots .rp+\sum_{s=2}^{L}r_{s}p_{s}$, where $a,b,\alpha_{s},\beta_{s} $ are complex numbers, and $r,p,r_{s},p_{s}
Externí odkaz:
http://arxiv.org/abs/1803.05953
We define a truncated Euler polynomial $E_{m,n}(x)$ as a generalization of the classical Euler polynomial $E_n(x)$. In this paper we give its some properties and relations with the hypergeometric Bernoulli polynomial.
Comment: Mathematica Slovac
Comment: Mathematica Slovac
Externí odkaz:
http://arxiv.org/abs/1802.07526
Publikováno v:
In Building and Environment September 2021 202
Publikováno v:
In Building and Environment 15 January 2021 188
Publikováno v:
In Aquaculture Reports November 2020 18
We show (an earlier conjecture of the last two authors) that the momentum and position operators of mu-deformed quantum mechanics for -1/2 < mu < 0 are not Accardi complementary. We also prove some related formulas that were conjectured by the same a
Externí odkaz:
http://arxiv.org/abs/0707.1660
Autor:
Pita-Ruiz, Claudio, Sontz, Stephen B.
Publikováno v:
J. Geom. Symm. Phys., 6, 101--108 (2006)
In this note we show that the momentum and position operators of $\mu$-deformed quantum mechanics for $\mu > 0$ are not Accardi complementary in a sense that we will define. We conjecture that this is also true if $-1/2 < \mu < 0$.
Comment: 9 pa
Comment: 9 pa
Externí odkaz:
http://arxiv.org/abs/math-ph/0512053