Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Ruf, Adrian Montgomery"'
Autor:
Ruf, Adrian Montgomery
We prove that adapted entropy solutions of scalar conservation laws with discontinuous flux are stable with respect to changes in the flux under the assumption that the flux is strictly monotone in u and the spatial dependency is piecewise constant w
Externí odkaz:
http://arxiv.org/abs/2008.08320
Publikováno v:
SIAM J. Numer. Anal., 59(3), (2021), 1167-1194
We present a second-order accurate numerical method for a class of nonlocal nonlinear conservation laws called the "nonlocal pair-interaction model" which was recently introduced by Du, Huang, and LeFloch. Our numerical method uses second-order accur
Externí odkaz:
http://arxiv.org/abs/2008.08326
Publikováno v:
SIAM J. Numer. Anal. 58 (2020) 607-629
We prove that a class of monotone finite volume schemes for scalar conservation laws with discontinuous flux converge at a rate of $\sqrt{\Delta x}$ in $\mathrm{L}^1$, whenever the flux is strictly monotone in $u$ and the spatial dependency of the fl
Externí odkaz:
http://arxiv.org/abs/1908.08772
We consider conservation laws with discontinuous flux where the initial datum, the flux function, and the discontinuous spatial dependency coefficient are subject to randomness. We establish a notion of random adapted entropy solutions to these equat
Externí odkaz:
http://arxiv.org/abs/1906.08991
Publikováno v:
SeMA Journal 2019
We consider a model for flow of liquid and gas in a pipe. We assume that the gas is ideal and that the liquid is incompressible. Under this assumption the resulting equations, expressing conservation of mass and momentum, splits into two subsystems s
Externí odkaz:
http://arxiv.org/abs/1906.00710
In 1994, Nessyahu, Tadmor and Tassa studied convergence rates of monotone finite volume approximations of conservation laws. For compactly supported, $\Lip^+$-bounded initial data they showed a first-order convergence rate in the Wasserstein distance
Externí odkaz:
http://arxiv.org/abs/1808.04661
Publikováno v:
Bit Numer Math (2019)
We prove convergence of a finite difference scheme to the unique entropy solution of a general form of the Ostrovsky--Hunter equation on a bounded domain with non-homogeneous Dirichlet boundary conditions. Our scheme is an extension of monotone schem
Externí odkaz:
http://arxiv.org/abs/1805.07255
Autor:
Ruf, Adrian Montgomery
Publikováno v:
Zeitschrift f\"ur angewandte Mathematik und Physik (2017) 68.5, p. 118
In this paper, we study a second-order, nonlinear evolution equation with damping arising in elastodynamics. The nonlinear term is monotone and possesses a convex potential but exhibits anisotropic and nonpolynomial growth. The appropriate setting fo
Externí odkaz:
http://arxiv.org/abs/1804.03612
Publikováno v:
Risebro, Nils Henrik Badwaik, Jayeesh Klingenberg, Christian Ruf, Adrian Montgomery . Multilevel Monte Carlo finite volume methods for random conservation laws with discontinuous flux.. Mathematical Modelling and Numerical Analysis. 2021, 55(3), 1039-1065
Mathematical Modelling and Numerical Analysis
Mathematical Modelling and Numerical Analysis
Externí odkaz:
http://hdl.handle.net/10852/91693
https://www.duo.uio.no/bitstream/handle/10852/91693/1/2004.12428.pdf
https://www.duo.uio.no/bitstream/handle/10852/91693/1/2004.12428.pdf
Publikováno v:
Fjordholm, Ulrik Skre Ruf, Adrian Montgomery . Second-order accurate TVD numerical methods for nonlocal nonlinear conservation laws. SIAM Jo
SIAM Jo
SIAM Jo
Externí odkaz:
http://hdl.handle.net/10852/93378
https://www.duo.uio.no/bitstream/handle/10852/93378/1/nonlocalclaws.pdf
https://www.duo.uio.no/bitstream/handle/10852/93378/1/nonlocalclaws.pdf