Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Rudger Kieboom"'
Publikováno v:
Galois Theory, Hopf Algebras, and Semiabelian Categories. :227-241
Publikováno v:
Applied Categorical Structures. 9:311-327
In this paper we give an explicit description of a homotopy bigroupoid of a topological space as a 2-dimensional structure in homotopy theory which allows one to derive some basic properties in 2-dimensional homotopical algebra using purely algebraic
Publikováno v:
Homology, Homotopy and Applications. 1:117-134
Autor:
Rudger Kieboom
Publikováno v:
Applied Categorical Structures. 5:131-142
It is well known that the concept of monomorphism in a category can be defined using an appropriate pullback diagram. In the homotopy category of TOP pullbacks do not generally exist. This motivated Michael Mather to introduce another notion of homot
Publikováno v:
Vrije Universiteit Brussel
Bull. Belg. Math. Soc. Simon Stevin 19, no. 5 (2012), 845-857
Bull. Belg. Math. Soc. Simon Stevin 19, no. 5 (2012), 845-857
In this paper we study loops, neardomains and nearfields from a categorical point of view. By choosing the right kind of morphisms, we can show that the category of neardomains is equivalent to the category of sharply 2-transitive groups. The other c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fdd8a98a21b74c68d02766fc22b94819
https://biblio.vub.ac.be/vubir/a-categorical-approach-to-loops-neardomains-and-nearfields(9b242097-0d0e-40f2-8528-c40e46c99757).html
https://biblio.vub.ac.be/vubir/a-categorical-approach-to-loops-neardomains-and-nearfields(9b242097-0d0e-40f2-8528-c40e46c99757).html
Publikováno v:
Scopus-Elsevier
Homology Homotopy Appl. 5, no. 1 (2003), 345-386
Homology, Homotopy and Applications, Vol. 5, no. 1, p. 345-386 (2003)
Homology Homotopy Appl. 5, no. 1 (2003), 345-386
Homology, Homotopy and Applications, Vol. 5, no. 1, p. 345-386 (2003)
We introduce a fibre homotopy relation for maps in a category of cofibrant objects equipped with a choice of cylinder objects. Weak fibrations are defined to be those morphisms having the weak right lifting property with respect to weak equivalences.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::599ff307d0eca8e0487f3e6c9fe11d85
https://biblio.vub.ac.be/vubir/weak-cofibrations-in-categories-of-cofibrant-objects(37d12798-98e8-4e77-b2b5-6c91302eec54).html
https://biblio.vub.ac.be/vubir/weak-cofibrations-in-categories-of-cofibrant-objects(37d12798-98e8-4e77-b2b5-6c91302eec54).html
Using Brown's construction (J. Algebra 15 (1970) 103) of an exact 6-term sequence for a fibration of groupoids we show how an exact 9-term sequence can be associated to a fibration of bigroupoids. Applications to topology and algebra are given.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6f0b2b73f8ed1a76e2c0ff2aca7c4756
https://biblio.vub.ac.be/vubir/fibrations-of-bigroupoids(97b8d0bf-2c07-43cb-b6fc-c10563fcbd1d).html
https://biblio.vub.ac.be/vubir/fibrations-of-bigroupoids(97b8d0bf-2c07-43cb-b6fc-c10563fcbd1d).html
Publikováno v:
Papers in Honour of Bernhard Banaschewski ISBN: 9789048155408
If X is a Hausdorff space we construct a 2-groupoid G 2 X with the following properties. The underlying category of G 2 X is the ‘path groupoid’ of X whose objects are the points of X and whose morphisms are equivalence classes , of paths f, g in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f9bda314ba989555c52305414c39fe48
https://biblio.vub.ac.be/vubir/a-homotopy-2groupoid-of-a-hausdorff-space(1e604740-9ad5-499d-8996-8a4c5037512f).html
https://biblio.vub.ac.be/vubir/a-homotopy-2groupoid-of-a-hausdorff-space(1e604740-9ad5-499d-8996-8a4c5037512f).html
Publikováno v:
Categorical Topology ISBN: 9789401066020
It is shown how a generalised comparison theorem for topological spaces under a fixed space A and over a fixed space B due to the third author can be transferred to cubical homotopy theory.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ec53e5cd18fe599f469583b37fe629c0
https://biblio.vub.ac.be/vubir/dold-type-theorems-in-cubical-homotopy-theory(f6c9c7ed-81fb-419b-aca0-bba2a7cbee05).html
https://biblio.vub.ac.be/vubir/dold-type-theorems-in-cubical-homotopy-theory(f6c9c7ed-81fb-419b-aca0-bba2a7cbee05).html
Autor:
Rudger Kieboom
Publikováno v:
Manuscripta Mathematica. 58:381-384
In this note we prove a pullback theorem for cofibrations, which extends a well known theorem of Strom [5]. It also implies the pullback theorem of Heath [4] for locally equiconnected spaces. In addition, we comment on the dual problem of attaching f