Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Rubén Sesma"'
Publikováno v:
Remote Sensing, Vol 13, Iss 16, p 3135 (2021)
The detection of building footprints and road networks has many useful applications including the monitoring of urban development, real-time navigation, etc. Taking into account that a great deal of human attention is required by these remote sensing
Externí odkaz:
https://doaj.org/article/a48863681d2545759cb12187528626d9
Super-Resolution of Sentinel-2 Images Using Convolutional Neural Networks and Real Ground Truth Data
Publikováno v:
Remote Sensing, Vol 12, Iss 18, p 2941 (2020)
Earth observation data is becoming more accessible and affordable thanks to the Copernicus programme and its Sentinel missions. Every location worldwide can be freely monitored approximately every 5 days using the multi-spectral images provided by Se
Externí odkaz:
https://doaj.org/article/09a1bbd51ebd4261b1b4d7f0ecf4ecbc
Publikováno v:
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XLII-2-W16, Pp 95-102 (2019)
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
Academica-e: Repositorio Institucional de la Universidad Pública de Navarra
Universidad Pública de Navarra
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
Academica-e: Repositorio Institucional de la Universidad Pública de Navarra
Universidad Pública de Navarra
Trabajo presentado al PIA19+MRSS19 – Photogrammetric Image Analysis & Munich Remote Sensing Symposium, 2019, Munich Incluye póster Obtaining Sentinel-2 imagery of higher spatial resolution than the native bands while ensuring that output imagery p
Publikováno v:
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
Remote Sensing, Vol 13, Iss 3135, p 3135 (2021)
Remote Sensing
Volume 13
Issue 16
Pages: 3135
instname
Remote Sensing, Vol 13, Iss 3135, p 3135 (2021)
Remote Sensing
Volume 13
Issue 16
Pages: 3135
The detection of building footprints and road networks has many useful applications including the monitoring of urban development, real-time navigation, etc. Taking into account that a great deal of human attention is required by these remote sensing
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::91d144990d4d1c8311a5841db620afff
https://hdl.handle.net/2454/41702
https://hdl.handle.net/2454/41702
Super-Resolution of Sentinel-2 Images Using Convolutional Neural Networks and Real Ground Truth Data
Publikováno v:
Remote Sensing, Vol 12, Iss 2941, p 2941 (2020)
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
Academica-e: Repositorio Institucional de la Universidad Pública de Navarra
Universidad Pública de Navarra
Remote Sensing; Volume 12; Issue 18; Pages: 2941
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
Academica-e: Repositorio Institucional de la Universidad Pública de Navarra
Universidad Pública de Navarra
Remote Sensing; Volume 12; Issue 18; Pages: 2941
Earth observation data is becoming more accessible and affordable thanks to the Copernicus programme and its Sentinel missions. Every location worldwide can be freely monitored approximately every 5 days using the multi-spectral images provided by Se
Publikováno v:
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
Academica-e: Repositorio Institucional de la Universidad Pública de Navarra
Universidad Pública de Navarra
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol V-1-2020, Pp 9-16 (2020)
instname
Academica-e: Repositorio Institucional de la Universidad Pública de Navarra
Universidad Pública de Navarra
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol V-1-2020, Pp 9-16 (2020)
Copernicus program via its Sentinel missions is making earth observation more accessible and affordable for everybody. Sentinel-2 images provide multi-spectral information every 5 days for each location. However, the maximum spatial resolution of its
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f840d2b26f8fac61ec6bf4ad44828007
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-1-2020/9/2020/
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-1-2020/9/2020/