Zobrazeno 1 - 10
of 294
pro vyhledávání: '"Ruas M"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Denote by $H(d_1,d_2,d_3)$ the set of all homogeneous polynomial mappings $F=(f_1,f_2,f_3): \C^3\to\C^3$, such that $\deg f_i=d_i$. We show that if $\gcd(d_i,d_j)\leq 2$ for $1\leq i
Externí odkaz:
http://arxiv.org/abs/1908.10675
We describe the topology of a general polynomial mapping $F=(f, g):X\to\Bbb C^2$, where $X$ is a complex plane or a complex sphere.
Comment: simplified version. arXiv admin note: text overlap with arXiv:1503.00017
Comment: simplified version. arXiv admin note: text overlap with arXiv:1503.00017
Externí odkaz:
http://arxiv.org/abs/1703.09683
Autor:
Ruas, M. A. S., Silva, O. N.
In this work, we study families of singular surfaces in $\mathbb{C}^3$ parametrized by $\mathcal{A}$-finitely determined map germs. We consider the topological triviality and Whitney equisingularity of an unfolding $F$ of a finitely determined map ge
Externí odkaz:
http://arxiv.org/abs/1608.08290
Publikováno v:
Bulletin of the Brazilian Mathematical Society, New Series 47 (2016) 1155-1179
For a generic embedding of a smooth closed surface $M$ into $\mathbb R^4$, the subset of $\mathbb R^4$ which is the affine $\lambda$-equidistant of $M$ appears as the discriminant set of a stable mapping $M \times M \to \mathbb R^4$, hence their stab
Externí odkaz:
http://arxiv.org/abs/1506.04027
We describe the topology of a general polynomial mapping $f:\Bbb C^2\to\Bbb C^2.$
Comment: It is a new extended version
Comment: It is a new extended version
Externí odkaz:
http://arxiv.org/abs/1503.00017
Publikováno v:
Mathematische Annalen, 366 (2016), 573-611
In this paper, a systematic method is given to construct all liftable vector fields over an analytic multigerm $f: (\mathbb{K}^n, S)\to (\mathbb{K}^p,0)$ of corank at most one admitting a one-parameter stable unfolding.
Comment: 34 pages. In ver
Comment: 34 pages. In ver
Externí odkaz:
http://arxiv.org/abs/1408.3825
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We generalise the operations of augmentation and concatenations in order to obtain multigerms of analytic (or smooth) maps $(\mathbb K^n,S)\rightarrow(\mathbb K^p,0)$ with $\mathbb K=\mathbb C$ or $\mathbb R$ from monogerms and some special multigerm
Externí odkaz:
http://arxiv.org/abs/1404.3149
We define generalized distance-squared mappings, and we concentrate on the plane to plane case. We classify generalized distance-squared mappings of the plane into the plane in a recognizable way.
Comment: 13 pages, 1 figure
Comment: 13 pages, 1 figure
Externí odkaz:
http://arxiv.org/abs/1404.2841