Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Rozensztajn, Sandra"'
Autor:
Berger, Laurent, Rozensztajn, Sandra
Publikováno v:
Alg. Number Th. 19 (2025) 195-211
Let E be a field of characteristic p. In a previous paper of ours, we defined and studied super-H\"older vectors in certain E-linear representations of Z_p. In the present paper, we define and study super-H\"older vectors in certain E-linear represen
Externí odkaz:
http://arxiv.org/abs/2209.02572
Autor:
David, Agnès, Rozensztajn, Sandra
We study the potentially semi-stable deformation rings for Galois representations taking their values in $PGL_n$, by comparing them to the deformation rings for $GL_n$. As an application, we state an analogue of the Breuil-M\'ezard conjecture, and we
Externí odkaz:
http://arxiv.org/abs/2207.13015
Autor:
Berger, Laurent, Rozensztajn, Sandra
Let $E$ be a field of characteristic $p$. The group $\mathbf{Z}_p^\times$ acts on $E((X))$ by $a \cdot f(X) = f((1+X)^a-1)$. This action extends to the $X$-adic completion $\tilde{\mathbf{E}}$ of $\cup_{n \geq 0} E((X^{1/p^n}))$. We show how to recov
Externí odkaz:
http://arxiv.org/abs/2201.09688
Autor:
Rozensztajn, Sandra
Publikováno v:
Alg. Number Th. 14 (2020) 643-700
We consider the family of irreducible crystalline representations of dimension $2$ of ${\rm Gal}(\overline{\bf Q}_p/{\bf Q}_p)$ given by the $V_{k,a_p}$ for a fixed weight integer $k\geq 2$. We study the locus of the parameter $a_p$ where these repre
Externí odkaz:
http://arxiv.org/abs/1705.01060
Autor:
Rozensztajn, Sandra
We describe an algorithm to compute the reduction modulo $p$ of a crystalline Galois representation of dimension $2$ of $\text{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$ with distinct Hodge-Tate weights via the semi-simple modulo $p$ Langlands corre
Externí odkaz:
http://arxiv.org/abs/1603.00763
Publikováno v:
Journal of Algebra 508 (2018) 98--156
We compute the reductions of irreducible crystalline two-dimensional representations of $G_{\mathbf{Q}_p}$ of slope 1, for primes $p \geq 5$, and all weights. We describe the semisimplification of the reductions completely. In particular, we show tha
Externí odkaz:
http://arxiv.org/abs/1504.03838
Autor:
Rozensztajn, Sandra
Publikováno v:
Journal de l'\'Ecole Polytechnique, tome 2 (2015), pp 179--211
We define deformation rings for potentially semi-stable deformations of fixed discrete series inertial type in dimension $2$. In the case of representations of the Galois group of $\mathbf{Q}_p$, we prove an analogue of the Breuil-M\'ezard conjecture
Externí odkaz:
http://arxiv.org/abs/1403.1794
Autor:
Rozensztajn, Sandra
Publikováno v:
Journal de th\'eorie des nombres de Bordeaux, 26 no. 2 (2014), p. 465-482
We study the irreducible constituents of the reduction modulo p of irreducible algebraic representations V of Res_{K/Q_p} GL_2 for K a finite extension of Q_p. We show that asymptotically, the multiplicity of each constituent depends only on the dime
Externí odkaz:
http://arxiv.org/abs/1209.5666
Autor:
Rozensztajn, Sandra
Let $X$ be an integral model at a prime $p$ of a Shimura variety of PEL type having good reduction, associated to a reductive group $G$. To $\mathbb{Z}_p$ reprsententations of the group $G$ can be associated two kinds of sheaves : crystals on the spe
Externí odkaz:
http://arxiv.org/abs/0704.1347
Publikováno v:
In Journal of Algebra 15 August 2018 508:98-156