Zobrazeno 1 - 10
of 65
pro vyhledávání: '"Roy Meshulam"'
Autor:
Irit Dinur, Roy Meshulam
Publikováno v:
Archiv der Mathematik. 118:549-561
Autor:
Gil Kalai, Roy Meshulam
Publikováno v:
Mathematika. 67:730-737
Let $\mathbb{F}$ be a fixed field and let $X$ be a simplicial complex on the vertex set $V$. The Leray number $L(X;\mathbb{F})$ is the minimal $d$ such that for all $i \geq d$ and $S \subset V$, the induced complex $X[S]$ satisfies $\tilde{H}_i(X[S];
Publikováno v:
Journal of Applied and Computational Topology. 4:29-44
An injective word over a finite alphabet $V$ is a sequence $w=v_1v_2\cdots v_t$ of distinct elements of $V$. The set $\mathrm{inj}(V)$ of injective words on $V$ is partially ordered by inclusion. A complex of injective words is the order complex $\De
Autor:
Shira Zerbib, Roy Meshulam
Publikováno v:
Journal of Algebra. 531:83-101
Let $V$ be an $n$-dimensional vector space over the finite field of order $q$. The spherical building $X_V$ associated with $GL(V)$ is the order complex of the nontrivial linear subspaces of $V$. Let $\mathfrak{g}$ be the local coefficient system on
Publikováno v:
Discrete & Computational Geometry. 60:420-429
Let $$U_1,\ldots ,U_{d+1}$$ be n-element sets in $$\mathbb {R}^d$$ . Pach’s selection theorem says that there exist subsets $$Z_1\subset U_1,\ldots ,Z_{d+1}\subset U_{d+1}$$ and a point $$u \in \mathbb {R}^d$$ such that each $$|Z_i|\ge c_1(d)n$$ an
Autor:
Dmitry N. Kozlov, Roy Meshulam
Publikováno v:
Research in the Mathematical Sciences. 6
We study several aspects of the $k$-th Cheeger constant of a complex X, a parameter that quantifies the distance of $X$ from a complex $Y$ with nontrivial $k$-th cohomology over $\mathbb{Z}_2$. Our results include general methods for bounding the cos
Autor:
Orr Beit-Aharon, Roy Meshulam
Let $G$ be a finite abelian group of order $n$ and let $\Delta_{n-1}$ denote the $(n-1)$-simplex on the vertex set $G$. The sum complex $X_{A,k}$ associated to a subset $A \subset G$ and $k < n$, is the $k$-dimensional simplicial complex obtained by
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::05a5b0e665aa34e2b696342291b342bb
http://arxiv.org/abs/1801.06466
http://arxiv.org/abs/1801.06466
Autor:
Amir Abu-Fraiha, Roy Meshulam
Let X be a k-dimensional simplicial complex such that the (k-j-2)-dimensional homology of the links of all j-dimensional simplices in X vanishes. An upper bound is given on the (k-1)-th Betti number of X. Examples based on sum complexes show that thi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::34d4951d5ceff3b6dd45f54a827e9b32
http://arxiv.org/abs/1703.05562
http://arxiv.org/abs/1703.05562
Autor:
Roy Meshulam, Martin Raussen
Publikováno v:
A Journey Through Discrete Mathematics ISBN: 9783319444789
Meshulam, R & Raussen, M H 2017, Homology of Spaces of Directed Paths in Euclidean Pattern Spaces . in M Loebl, J Nesetril & R Thomas (eds), A Journey Through Discrete Mathematics : A Tribute to Jirí Matousek . Springer, pp. 593-614 . https://doi.org/10.1007/978-3-319-44479-6_24
Meshulam, R & Raussen, M H 2017, Homology of Spaces of Directed Paths in Euclidean Pattern Spaces . in M Loebl, J Nesetril & R Thomas (eds), A Journey Through Discrete Mathematics : A Tribute to Jirí Matousek . Springer, pp. 593-614 . https://doi.org/10.1007/978-3-319-44479-6_24
Let \(\mathcal{F}\) be a family of subsets of {1, …, n} and let $$\displaystyle{ Y _{\mathcal{F}} =\bigcup _{F\in \mathcal{F}}\{(x_{1},\ldots,x_{n}) \in \mathbb{R}^{n}: x_{ i} \in \mathbb{Z}\text{for all}i \in F\}. }$$ Let \(X_{\mathcal{F}} = \math
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::85698cd0743562b3ad717c11f81e36f6
https://doi.org/10.1007/978-3-319-44479-6_24
https://doi.org/10.1007/978-3-319-44479-6_24
Autor:
Roy Meshulam
We study the maximal rank in affine subspaces of symmetric or alternating matrices, in terms of the matching numbers of certain associated graphs. Applications include simple proofs of upper bounds on the dimension of such subspaces in terms of their
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::83f898cbe05f5d4b198be9430ced5bd0