Zobrazeno 1 - 10
of 45
pro vyhledávání: '"Roy Ka-Wei Lee"'
Publikováno v:
IEEE Transactions on Computational Social Systems. :1-10
Hate speech in social media is a growing phenomenon, and detecting such toxic content has recently gained significant traction in the research community. Existing studies have explored fine-tuning language models (LMs) to perform hate speech detectio
Autor:
Logan Markewich, Hao Zhang, Yubin Xing, Navid Lambert-Shirzad, Zhexin Jiang, Roy Ka-Wei Lee, Zhi Li, Seok-Bum Ko
Publikováno v:
International Journal on Document Analysis and Recognition (IJDAR). 25:67-77
Autor:
Bo Liu, Xiangguo Sun, Qing Meng, Xinyan Yang, Yang Lee, Jiuxin Cao, Junzhou Luo, Roy Ka-Wei Lee
Publikováno v:
IEEE Transactions on Neural Networks and Learning Systems. :1-12
Online rumor detection is crucial for a healthier online environment. Traditional methods mainly rely on content understanding. However, these contents can be easily adjusted to avoid such supervision and are insufficient to improve the detection res
Publikováno v:
IEEE Transactions on Artificial Intelligence. :1-10
Autor:
Qing Meng, Bo Liu, Xiangguo Sun, Hui Yan, Chengyu Liang, Jiuxin Cao, Roy Ka-Wei Lee, Xing Bao
Publikováno v:
IEEE Transactions on Computational Social Systems. :1-12
Autor:
Keyu Chen, Ashley Feng, Rohan Aanegola, Koustuv Saha, Allie Wong, Zach Schwitzky, Roy Ka-Wei Lee, Robin O’Hanlon, Munmun De Choudhury, Frederick L. Altice, Kaveh Khoshnood, Navin Kumar
Publikováno v:
Computational Data and Social Networks ISBN: 9783031263026
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::008c9c595ef0982f467f9eb9624f89a1
https://doi.org/10.1007/978-3-031-26303-3_3
https://doi.org/10.1007/978-3-031-26303-3_3
Publikováno v:
2022 IEEE International Conference on Big Data (Big Data).
Publikováno v:
14th ACM Web Science Conference 2022.
Publikováno v:
IEEE Transactions on Knowledge and Data Engineering. 33:70-84
Finding influential users in online social networks (OSNs) is an important problem with many possible useful applications. Many methods have been proposed to identify influential users in OSNs. PageRank and HITs are two well known examples that deter
Publikováno v:
SSRN Electronic Journal.