Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Roy, Praveen Kumar"'
Let $X$ be a normal projective variety with an action of a semisimple algebraic group $G$ such that $X$ contains a unique closed orbit. Let $B$ be a Borel subgroup of $G$ and let $E$ be a $B$-equivariant vector bundle on $X$. In this article, we prov
Externí odkaz:
http://arxiv.org/abs/2409.20376
We showcase a computation of the fundamental group of $\mathbb{CP}^2 - \mathcal{C}$ when $\mathcal{C}$ is a curve admitting a lot of symmetries. In particular, let $\mathcal{C}$ denote the Fermat line arrangement in $\mathbb{CP}^2$ defined by the van
Externí odkaz:
http://arxiv.org/abs/2310.04365
Let $X$ be a complex nonsingular projective surface and let $L$ be an ample line bundle on $X$. We study multi-point Seshadri constants of $L$ at singular points of certain arrangements of curves on $X$. We pose some questions about such Seshadri con
Externí odkaz:
http://arxiv.org/abs/2309.16981
We compute the fundamental group of the Galois cover of a surface of degree $8$, with singularities of degree $4$ whose degeneration is homeomorphic to a sphere. The group is shown to be a metabelian group of order $2^{23}$. The computation amalgamat
Externí odkaz:
http://arxiv.org/abs/2303.05241
Let $C$ be a chain-like curve over $\mathbb{C}$. In this paper, we investigate the rationality of moduli spaces of $w$-semistable vector bundles on $C$ of arbitrary rank and fixed determinant by putting some restrictions on the Euler characteristics.
Externí odkaz:
http://arxiv.org/abs/2206.02372
Autor:
Karmakar, Rupam, Roy, Praveen Kumar
Publikováno v:
International Journal of Mathematics, Vol 33, (2023) 2350097
Let $X^n_{r,s}$ denote the blow-up of $\mathbb{P}^n$ along $r$ general lines and $s$ general points. In this paper, we focus on $l$-very ample line bundles on $X^n_{0,s}$ and investigate their Seshadri constants with some restrictions on $s$. Additio
Externí odkaz:
http://arxiv.org/abs/2110.10114
Autor:
Roy, Praveen Kumar
We prove two new results for Seshadri constants on surfaces of general type. Let $X$ be a surface of general type. In the first part, inspired by \cite{B-S}, we list the possible values for the multi-point Seshadri constant $\varepsilon(K_X,x_1,x_2,.
Externí odkaz:
http://arxiv.org/abs/1905.10197
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Journal of Geometry and Physics September 2022 179
We prove new results on single point Seshadri constants for ample line bundles on hyperelliptic surfaces. Given a hyperelliptic surface $X$ and an ample line bundle $L$ on $X$, we show that the least Seshadri constant $\varepsilon(L)$ of $L$ is a rat
Externí odkaz:
http://arxiv.org/abs/1709.06788