Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Rouy, Elisabeth"'
Autor:
Rouy, Elisabeth, Tourin, Agnès
Publikováno v:
SIAM Journal on Numerical Analysis, 1992 Jun 01. 29(3), 867-884.
Externí odkaz:
https://www.jstor.org/stable/2158283
Autor:
Cardaliaguet, Pierre1 Pierre.Cardaliaguet@univ-brest.fr, Rouy, Elisabeth2 rouy@univ-lyon1.fr
Publikováno v:
SIAM Journal on Mathematical Analysis. 2006, Vol. 38 Issue 1, p143-165. 23p.
Publikováno v:
SIAM Journal on Control & Optimization. 2000, Vol. 38 Issue 2, p400. 31p.
Autor:
Rouy Elisabeth
Publikováno v:
Communications in Partial Differential Equations. 21:1279-1305
We study the following tridimensional magnetostatic inverse shaping problem: can one find a distribution of currents around a levitating liquid metal bubble so that it takes a given shape? It leads to the resolution of an Eilonal equation on the surf
Publikováno v:
RR-4638, INRIA. 2002
This research report presents an approach to the shape from shading problem which is based upon the notion of viscosity solutions to the shading partial differential equation, in effect a Hamilton-Jacobi equation. The power of this approach is twofol
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::3d321f7369e6479a17edf1340c954b7e
https://inria.hal.science/inria-00071947
https://inria.hal.science/inria-00071947
Publikováno v:
[Research Report] RR-3190, INRIA. 1997, pp.24
We give necessary and sufficient conditions for a given element to be a member of the second order tangent set $T»_{K}(f,v)$ to the positive cone $K$ in $L^{\infty}¸.$ Since, in general $T»_{K}(f,v)$ may be empty we give conditions on functions $f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::dd04f69e509984fbd5aebdfb0f20ae83
https://inria.hal.science/inria-00073499/file/RR-3190.pdf
https://inria.hal.science/inria-00073499/file/RR-3190.pdf
Autor:
Pierre, Michel, Rouy, Elisabeth
Publikováno v:
[Research Report] RR-2655, INRIA. 1995, pp.34
We study a question which arises in the following tridimensional magnetostatic inverse shaping problem: can one find a distribution of currents around a levitating liquid metal bubble so that it takes a given shape? It leads to the resolution of an H
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::ad5eb4cebcb3b8fd2b8bce706be2bfc3
https://inria.hal.science/inria-00074034
https://inria.hal.science/inria-00074034
Autor:
Gozzi, Fausto, Rouy, Elisabeth
Publikováno v:
[Research Report] RR-2649, INRIA. 1995, pp.33
We study a second-order stationary Hamilton-Jacobi equation in infinite dimension. This equation is nonlinear and convex with respect to the first-ord- er term. We use properties of a the transition semigroup associated to the linear equation to writ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::8321a7cbee24553639d6ef936c1b9263
https://inria.hal.science/inria-00074041/file/RR-2649.pdf
https://inria.hal.science/inria-00074041/file/RR-2649.pdf
Autor:
Abergel, Frédéric, Rouy, Elisabeth
Publikováno v:
[Rapport de recherche] RR-2651, INRIA. 1995, pp.45
Nous présentons une étude complète des équations de Navier-Stokes stationnaire- s avec conditions aux limites de surface libre. Nous donnons des résultats d'existence, d'unicité et de régularité pour des écoulements de liquides visqueux à s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::7039e0a2748d8f5907960fe0d608d63e
https://inria.hal.science/inria-00074039
https://inria.hal.science/inria-00074039
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.