Zobrazeno 1 - 10
of 69
pro vyhledávání: '"Roushon, S. K."'
Autor:
Li, Li, Roushon, S. K.
In this note we prove that the affine Artin group of type $\widetilde B_n$ is virtually poly-free. The proof also gives another solution of the $K(\pi, 1)$ problem for $\widetilde B_n$.
Comment: 10 pages
Comment: 10 pages
Externí odkaz:
http://arxiv.org/abs/2403.09533
Autor:
Roushon, S K
Publikováno v:
Topol. Appl. (2024)
The complement of the hyperplanes $\{x_i=x_j\}$, for all $i\neq j$ in $M^n$, for $M$ an aspherical $2$-manifold, is known to be aspherical. Here we consider the situation, when $M$ is a $2$-dimensional orbifold. We prove this complement to be aspheri
Externí odkaz:
http://arxiv.org/abs/2309.12198
Autor:
Roushon, S K
Publikováno v:
Bull. Sci. math. 193 (2024), 103448
We prove a four-term exact sequence of surface orbifold pure braid groups for all genus $\geq 1$, $2$-dimensional orientable orbifolds with cone points. This corrects our earlier result in arXiv.2106.08110.
Comment: 8p., 4 figures. arXiv admin n
Comment: 8p., 4 figures. arXiv admin n
Externí odkaz:
http://arxiv.org/abs/2309.12155
Autor:
Roushon, S. K.
The orbifold braid groups of two dimensional orbifolds were defined in [1] (arXiv:math/9907194) to understand certain Artin groups as subgroups of some suitable orbifold braid groups. We studied orbifold braid groups in some more detail in [17] (arXi
Externí odkaz:
http://arxiv.org/abs/2301.02043
Autor:
Roushon, S. K.
In [8](arXiv:2111.06159) we introduced the notion of a k-almost-quasifibration. In this article we update this definition and call it a k-c-quasifibration. This will help us to relate it to quasifibrations. We study some basic properties of k-c-quasi
Externí odkaz:
http://arxiv.org/abs/2206.10250
Autor:
Roushon, S K
In this article we introduce the notion of a k-almost-quasifibration and give many examples. We also show that a large class of these examples are not quasifibrations. As a consequence, supporting the Asphericity conjecture of [19], we deduce that th
Externí odkaz:
http://arxiv.org/abs/2111.06159
Autor:
Roushon, S. K.
In [19] we studied a Fadell-Neuwirth type fibration theorem for orbifolds, and gave a short exact sequence of fundamental groups of configuration Lie groupoids of Lie groupoids corresponding to the genus zero 2-dimensional orbifolds with cone points,
Externí odkaz:
http://arxiv.org/abs/2106.08110
Autor:
Roushon, S K
In this short note we prove that a class of Artin groups of affine and complex types are virtually poly-free, answering partially the question if all Artin groups are virtually poly-free.
Comment: This paper is now merged with arXiv:2006.07106
Comment: This paper is now merged with arXiv:2006.07106
Externí odkaz:
http://arxiv.org/abs/2007.02779
Autor:
Roushon, S K
Publikováno v:
Bull. Sci. math. (2021), 103028
We propose two definitions of configuration Lie groupoids and in both the cases we prove a Fadell-Neuwirth type fibration theorem for a class of Lie groupoids. We show that this is the best possible extension, in the sense that, for the class of Lie
Externí odkaz:
http://arxiv.org/abs/2006.07106
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.