Zobrazeno 1 - 10
of 45
pro vyhledávání: '"Roubtsov, Vladimir"'
Let $X$ be a compact connected Riemann surface of genus $g$, with $g\, \geq\,2$, and let $\xi$ be a holomorphic line bundle on $X$ with $\xi^{\otimes 2}\,=\, {\mathcal O}_X$. Fix a theta characteristic $\mathbb L$ on $X$. Let ${\mathcal M}_X(r,\xi)$
Externí odkaz:
http://arxiv.org/abs/2303.09701
Let ${\mathcal B}_g(r)$ be the moduli space of triples of the form $(X,\, K^{1/2}_X,\, F)$, where $X$ is a compact connected Riemann surface of genus $g$, with $g\, \geq\, 2$, $K^{1/2}_X$ is a theta characteristic on $X$, and $F$ is a stable vector b
Externí odkaz:
http://arxiv.org/abs/2107.10440
Autor:
Roubtsov, Vladimir, Dutykh, Denys
This manuscript is essentially a collection of lecture notes which were given by the first author at the Summer School Wisl-2019, Poland and written down by the second author. As the title suggests, the material covered here includes the Poisson and
Externí odkaz:
http://arxiv.org/abs/2003.14173
Publikováno v:
Commun. Math. Phys. (2018) 363: 503
All Painlev\'e equations can be written as a time-dependent Hamiltonian system, and as such they admit a natural generalization to the case of several particles with an interaction of Calogero type (rational, trigonometric or elliptic). Recently, the
Externí odkaz:
http://arxiv.org/abs/1710.00736
We show how a symmetry reduction of the equations for incompressible hydrodynamics in three dimensions leads naturally to a Monge-Amp\`ere structure, and Burgers'-type vortices are a canonical class of solutions associated with this structure. The ma
Externí odkaz:
http://arxiv.org/abs/1510.02327
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
SIGMA 3 (2007), 013, 14 pages
We apply the Separation of Variables method to obtain eigenvectors of commuting Hamiltonians in the quantum relativistic Toda chain at a root of unity with boundary interaction.
Comment: This is a contribution to the Vadim Kuznetsov Memorial Iss
Comment: This is a contribution to the Vadim Kuznetsov Memorial Iss
Externí odkaz:
http://arxiv.org/abs/nlin/0701040
We study the Navier-Stokes and Euler equations of incompressible hydrodynamics in two and three spatial dimensions and show how the constraint of incompressiblility leads to equations of Monge--Amp\`ere type for the stream function, when the Laplacia
Externí odkaz:
http://arxiv.org/abs/nlin/0509023
Publikováno v:
Noncommutative birational geometry, representations and combinatorics
Contemporary Mathematics
Noncommutative Birational Geometry, Representations and Combinatorics
Arkady Berenstein, Vladimir Retakh. Noncommutative Birational Geometry, Representations and Combinatorics, 592, American Mathematical Society, pp.225-239, 2013, Contemporary Mathematics ; 592, 978-0-8218-8980-0. ⟨10.1090/conm/592⟩
Contemporary Mathematics
Noncommutative Birational Geometry, Representations and Combinatorics
Arkady Berenstein, Vladimir Retakh. Noncommutative Birational Geometry, Representations and Combinatorics, 592, American Mathematical Society, pp.225-239, 2013, Contemporary Mathematics ; 592, 978-0-8218-8980-0. ⟨10.1090/conm/592⟩
We discuss double Poisson structures in sense of M. Van den Bergh on free associative algebras focusing on the case of quadratic Poisson brackets. We establish their relations with an associative version of Young-Baxter equations, we study a bi-hamil
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d37e770ce2ba525772d19570cd0bcf76
https://hdl.handle.net/21.11116/0000-0004-1BFA-521.11116/0000-0004-1BFC-3
https://hdl.handle.net/21.11116/0000-0004-1BFA-521.11116/0000-0004-1BFC-3
Publikováno v:
International Journal of Geometric Methods in Modern Physics
International Journal of Geometric Methods in Modern Physics, World Scientific Publishing, 2014, 11 (9), pp.1460036
International Journal of Geometric Methods in Modern Physics, World Scientific Publishing, 2014, 11 (9), pp.1460036
International audience; We discuss associative analogues of classical Yang-Baxter equation meromorphically dependent on parameters. We discover that such equations enter in a description of a general class of parameter-dependent Poisson structures an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::2fc1051556478e0cd1f43823be9fc2b2
https://hal.univ-angers.fr/hal-03038389/document
https://hal.univ-angers.fr/hal-03038389/document