Zobrazeno 1 - 10
of 79
pro vyhledávání: '"Roth, MIke"'
Autor:
Dionne, Chris, Roth, Mike
In this paper we compute the $r$-point Seshadri constant on $\mathbb{P}^1\times\mathbb{P}^1$ for those line bundles where the answer might be expected to be governed by $(-1)$-curves. As a consequence we obtain explicit formulas for the symplectic pa
Externí odkaz:
http://arxiv.org/abs/2406.11656
Autor:
McKinnon, David, Roth, Mike
Let $V$ be a smooth, projective, rationally connected variety, defined over a number field $k$, and let $Z\subset V$ be a closed subset of codimension at least two. In this paper, for certain choices of $V$, we prove that the set of $Z$-integral poin
Externí odkaz:
http://arxiv.org/abs/2002.04961
Autor:
Dimitrov, Ivan, Roth, Mike
In this paper we show that when $\mathrm{G}$ is a classical semi-simple algebraic group, $\mathrm{B}\subset\mathrm{G}$ a Borel subgroup, and $\mathrm{X} = \mathrm{G}/\mathrm{B}$, then the structure coefficients of the Belkale-Kumar product $\odot_{0}
Externí odkaz:
http://arxiv.org/abs/1707.06840
Autor:
Dimitrov, Ivan, Roth, Mike
Let $\mathfrak{g}$ be a simple complex Lie algebra and let $\mathfrak{t} \subset \mathfrak{g}$ be a toral subalgebra of $\mathfrak{g}$. As a $\mathfrak{t}$-module $\mathfrak{g}$ decomposes as \[\mathfrak{g} = \mathfrak{s} \oplus \big(\oplus_{\nu \in
Externí odkaz:
http://arxiv.org/abs/1612.02851
Autor:
Roth, Mike, Sumiacher, David
Publikováno v:
Interdisciplinary Research in Counseling, Ethics and Philosophy. 1(3):75-79
Externí odkaz:
https://www.ceeol.com/search/article-detail?id=995419
Publikováno v:
In Medical Image Analysis May 2020 62
Publikováno v:
In Medical Image Analysis January 2020 59
Autor:
McKinnon, David, Roth, Mike
Publikováno v:
Inventiones Mathematicae 200 (2015) 513--583
In this paper, we associate an invariant $\alpha_{x}(L)$ to an algebraic point $x$ on an algebraic variety $X$ with an ample line bundle $L$. The invariant $\alpha$ measures how well $x$ can be approximated by rational points on $X$, with respect to
Externí odkaz:
http://arxiv.org/abs/1306.2976
Autor:
Roth, Mike
Let G be a semisimple algebraic group over an algebraically-closed field of characteristic zero. In this note we show that every regular face of the Littlewood-Richardson cone of G gives rise to a reduction rule: a rule which, given a problem "on tha
Externí odkaz:
http://arxiv.org/abs/1004.5133
Autor:
Dimitrov, Ivan, Roth, Mike
Publikováno v:
Alg. Number Th. 11 (2017) 767-815
Let X=G/B be a complete flag variety, and L' and L" two line bundles on X. Consider the cup product map H^{d'}(X,L') x H^{d"}(X, L") --> H^{d}(X,L), where L=L' x L" and d=d'+d". We answer two natural questions about the map above: When is it a nonzer
Externí odkaz:
http://arxiv.org/abs/0909.2280