Zobrazeno 1 - 10
of 69
pro vyhledávání: '"Rossana Vermiglio"'
Publikováno v:
Mathematical Biosciences and Engineering, Vol 21, Iss 4, Pp 5360-5393 (2024)
In this paper, we introduce a general numerical method to approximate the reproduction numbers of a large class of multi-group, age-structured, population models with a finite age span. To provide complete flexibility in the definition of the birth a
Externí odkaz:
https://doaj.org/article/00b0c3053ab54d1386f87125ca1ef451
Publikováno v:
Computers & Mathematics with Applications. 116:15-24
Structured epidemic models can be formulated as first-order hyperbolic PDEs, where the "spatial" variables represent individual traits, called structures. For models with two structures, we propose a numerical technique to approximate $R_{0}$, which
Publikováno v:
Discrete & Continuous Dynamical Systems - S. 13:2575-2602
In this paper we study the pseudospectral approximation of delay differential equations formulated as abstract differential equations in the \begin{document}$ \odot* $\end{document} -space. This formalism also allows us to define rigorously the abstr
Autor:
Rossana Vermiglio, Andrea Zamolo
Publikováno v:
Advances in Delays and Dynamics ISBN: 9783030890131
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9fefbb1ca134cc357059ddd90530e50c
https://doi.org/10.1007/978-3-030-89014-8_8
https://doi.org/10.1007/978-3-030-89014-8_8
Autor:
Alessia Andò, Dimitri Breda, Davide Liessi, Stefano Maset, Francesca Scarabel, Rossana Vermiglio
Publikováno v:
Advances in Delays and Dynamics ISBN: 9783030890131
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e870ddaf1b9615e6e651252cc632c431
https://doi.org/10.1007/978-3-030-89014-8_7
https://doi.org/10.1007/978-3-030-89014-8_7
Publikováno v:
Journal of Computational and Applied Mathematics
As widely known, the basic reproduction number plays a key role in weighing birth/infection and death/recovery processes in several models of population dynamics. In this general setting, its characterization as the spectral radius of next generation
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e6426a9a6453e7d3075d40824f312b1b
http://hdl.handle.net/11390/1189061
http://hdl.handle.net/11390/1189061
Publikováno v:
Journal of Scientific Computing, 2020, vol. 85, art.núm. 40
Articles publicats (D-IMAE)
Breda, Dimitri Kuniya, Toshikazu Ripoll i Misse, Jordi Vermiglio, Rossana 2020 Collocation of Next-Generation Operators for Computing the Basic Reproduction Number of Structured Populations Journal Of Scientific Computing 85 art.núm. 40
DUGiDocs – Universitat de Girona
instname
Journal of Scientific Computing
Articles publicats (D-IMAE)
Breda, Dimitri Kuniya, Toshikazu Ripoll i Misse, Jordi Vermiglio, Rossana 2020 Collocation of Next-Generation Operators for Computing the Basic Reproduction Number of Structured Populations Journal Of Scientific Computing 85 art.núm. 40
DUGiDocs – Universitat de Girona
instname
Journal of Scientific Computing
We contribute a full analysis of theoretical and numerical aspects of the collocation approach recently proposed by some of the authors to compute the basic reproduction number of structured population dynamics as spectral radius of certain infinite-
Autor:
Francesco Florian, Rossana Vermiglio
Publikováno v:
SEMA SIMAI Springer Series ISBN: 9783030411190
The basic reproduction number, simply denoted by R0, plays a fundamental role in the analysis of population and epidemic models. However in mathematical modelling the specification of the input parameters can be crucial since, due to some limitations
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bf975d9c3dc607989024d3e5c157e5f6
https://doi.org/10.1007/978-3-030-41120-6_11
https://doi.org/10.1007/978-3-030-41120-6_11
Publikováno v:
Applied Mathematics and Computation. 333:490-505
We address the problem of the numerical bifurcation analysis of general nonlinear delay equations, including integral and integro-differential equations, for which no software is currently available. Pseudospectral discretization is applied to the ab
Publikováno v:
Journal of Computational and Applied Mathematics, 397, 1. Elsevier
We propose an approximation of nonlinear renewal equations by means of ordinary differential equations. We consider the integrated state, which is absolutely continuous and satisfies a delay differential equation. By applying the pseudospectral appro