Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Ross D. Williams"'
Autor:
Luis H. John, Egill A. Fridgeirsson, Jan A. Kors, Jenna M. Reps, Ross D. Williams, Patrick B. Ryan, Peter R. Rijnbeek
Publikováno v:
BMC Medicine, Vol 22, Iss 1, Pp 1-12 (2024)
Abstract Background A prediction model can be a useful tool to quantify the risk of a patient developing dementia in the next years and take risk-factor-targeted intervention. Numerous dementia prediction models have been developed, but few have been
Externí odkaz:
https://doaj.org/article/fc208c44b82f4bab9139744e5d70852e
Publikováno v:
BMC Medical Informatics and Decision Making, Vol 22, Iss 1, Pp 1-14 (2022)
Abstract Background Prognostic models that are accurate could help aid medical decision making. Large observational databases often contain temporal medical data for large and diverse populations of patients. It may be possible to learn prognostic mo
Externí odkaz:
https://doaj.org/article/03646020bbc9442bbe82528cc6ce723a
Autor:
Ross D. Williams, Aniek F. Markus, Cynthia Yang, Talita Duarte-Salles, Scott L. DuVall, Thomas Falconer, Jitendra Jonnagaddala, Chungsoo Kim, Yeunsook Rho, Andrew E. Williams, Amanda Alberga Machado, Min Ho An, María Aragón, Carlos Areia, Edward Burn, Young Hwa Choi, Iannis Drakos, Maria Tereza Fernandes Abrahão, Sergio Fernández-Bertolín, George Hripcsak, Benjamin Skov Kaas-Hansen, Prasanna L. Kandukuri, Jan A. Kors, Kristin Kostka, Siaw-Teng Liaw, Kristine E. Lynch, Gerardo Machnicki, Michael E. Matheny, Daniel Morales, Fredrik Nyberg, Rae Woong Park, Albert Prats-Uribe, Nicole Pratt, Gowtham Rao, Christian G. Reich, Marcela Rivera, Tom Seinen, Azza Shoaibi, Matthew E. Spotnitz, Ewout W. Steyerberg, Marc A. Suchard, Seng Chan You, Lin Zhang, Lili Zhou, Patrick B. Ryan, Daniel Prieto-Alhambra, Jenna M. Reps, Peter R. Rijnbeek
Publikováno v:
BMC Medical Research Methodology, Vol 22, Iss 1, Pp 1-13 (2022)
Abstract Background We investigated whether we could use influenza data to develop prediction models for COVID-19 to increase the speed at which prediction models can reliably be developed and validated early in a pandemic. We developed COVID-19 Esti
Externí odkaz:
https://doaj.org/article/da152b2f9d8848c687fd69d67eb875e5
Autor:
Jenna M. Reps, Ross D. Williams, Seng Chan You, Thomas Falconer, Evan Minty, Alison Callahan, Patrick B. Ryan, Rae Woong Park, Hong-Seok Lim, Peter Rijnbeek
Publikováno v:
BMC Medical Research Methodology, Vol 20, Iss 1, Pp 1-10 (2020)
Abstract Background To demonstrate how the Observational Healthcare Data Science and Informatics (OHDSI) collaborative network and standardization can be utilized to scale-up external validation of patient-level prediction models by enabling validati
Externí odkaz:
https://doaj.org/article/e899d8f5ba2e4f9f87c37127f7a75bb0
Autor:
Cynthia Yang, Egill A. Fridgeirsson, Jan A. Kors, Jenna M. Reps, Peter R. Rijnbeek, Jenna Wong, Ross D. Williams
Publikováno v:
Caring is Sharing – Exploiting the Value in Data for Health and Innovation ISBN: 9781643683881
We investigated a stacking ensemble method that combines multiple base learners within a database. The results on external validation across four large databases suggest a stacking ensemble could improve model transportability.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7fecac1f6431ba713860e8d72bfd61b0
https://doi.org/10.3233/shti230080
https://doi.org/10.3233/shti230080
Publikováno v:
Caring is Sharing – Exploiting the Value in Data for Health and Innovation ISBN: 9781643683881
The Deposit, Evaluate and Lookup Predictive Healthcare Information (DELPHI) library provides a centralised location for the depositing, exploring and analysing of patient-level prediction models that are compatible with data mapped to the observation
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0c969fd9870eadae3471b960a3910c06
https://doi.org/10.3233/shti230085
https://doi.org/10.3233/shti230085
Autor:
Tom M. Seinen, Egill Fridgeirsson, Solomon Ioannou, Daniel Jeannetot, Luis H. John, Jan A. Kors, Aniek F. Markus, Victor Pera, Alexandros Rekkas, Ross D. Williams, Cynthia Yang, Erik van Mulligen, Peter R. Rijnbeek
Publikováno v:
Journal of the American Medical Informatics Association, 29(7), 1292-1302. Oxford University Press
Objective This systematic review aims to assess how information from unstructured text is used to develop and validate clinical prognostic prediction models. We summarize the prediction problems and methodological landscape and determine whether usin
Autor:
Cynthia Yang, Ross D. Williams, Joel N. Swerdel, João Rafael Almeida, Emily S. Brouwer, Edward Burn, Loreto Carmona, Katerina Chatzidionysiou, Talita Duarte-Salles, Walid Fakhouri, Antje Hottgenroth, Meghna Jani, Raivo Kolde, Jan A. Kors, Lembe Kullamaa, Jennifer Lane, Karine Marinier, Alexander Michel, Henry Morgan Stewart, Albert Prats-Uribe, Sulev Reisberg, Anthony G. Sena, Carmen O. Torre, Katia Verhamme, David Vizcaya, James Weaver, Patrick Ryan, Daniel Prieto-Alhambra, Peter R. Rijnbeek
Publikováno v:
Seminars in Arthritis and Rheumatism, 56:152050. W.B. Saunders
Semin Arthritis Rheum
Semin Arthritis Rheum
Background:Identification of rheumatoid arthritis (RA) patients at high risk of adverse health outcomes remains a major challenge. We aimed to develop and validate prediction models for a variety of adverse health outcomes in RA patients initiating f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c7e0af8938ce4c1f48b9debdd06c651b
https://pure.eur.nl/en/publications/3cf1639f-3ab5-49e0-909c-2b4156f660ec
https://pure.eur.nl/en/publications/3cf1639f-3ab5-49e0-909c-2b4156f660ec
Autor:
Thomas Falconer, K van Bochove, Andrew E. Williams, Ross D. Williams, Michael E. Matheny, Carlos Areia, Harlan M. Krumholz, Morales, Albert Prats-Uribe, M Aragon, James Weaver, Martijn J. Schuemie, Lin Zhang, George Hripcsak, Scott L. DuVall, Daniel Prieto-Alhambra, Kristine E. Lynch, Nicole L. Pratt, Kristin Kostka, Rae Woong Park, Christophe G. Lambert, Cynthia Sung, T Duarte-Salles, Thamir M. Alshammari, Jce Lane, Fredrik Nyberg, Sergio Fernandez-Bertolin, Peter R. Rijnbeek, Patrick B. Ryan, Anthony G. Sena, Seng Chan You, Mitchell M. Conover, Marc A. Suchard
Publikováno v:
medRxiv
The Lancet. Digital Health
article-version (status) pre
article-version (number) 1
The Lancet Digital Health
The Lancet Digital Health, 3(2), e98-e114. Elsevier Ltd.
The Lancet. Digital Health
article-version (status) pre
article-version (number) 1
The Lancet Digital Health
The Lancet Digital Health, 3(2), e98-e114. Elsevier Ltd.
Background Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) have been postulated to affect susceptibility to COVID-19. Observational studies so far have lacked rigorous ascertainment adjustment and internation
Autor:
Alison Callahan, Ross D. Williams, Seng Chan You, Evan P. Minty, Jenna Reps, Thomas Falconer, Peter R. Rijnbeek, Patrick B. Ryan, Hong-Seok Lim, Rae Woong Park
Publikováno v:
BMC Medical Research Methodology, Vol 20, Iss 1, Pp 1-10 (2020)
BMC Medical Research Methodology
BMC Medical Research Methodology, 20(1). BioMed Central Ltd.
BMC Medical Research Methodology
BMC Medical Research Methodology, 20(1). BioMed Central Ltd.
Background To demonstrate how the Observational Healthcare Data Science and Informatics (OHDSI) collaborative network and standardization can be utilized to scale-up external validation of patient-level prediction models by enabling validation across