Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Rosina Weber-Lee"'
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783540679332
EWCBR
EWCBR
Some problem-solving tasks are amenable to integrated case retrieval and generative planning techniques. This is certainly true for some decision support tasks, in which a user controls the problem-solving process but cannot provide a complete domain
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::51cb24b5110ca88dfbd13b8524ccbbd1
https://doi.org/10.1007/3-540-44527-7_19
https://doi.org/10.1007/3-540-44527-7_19
Autor:
Tânia C. D'Agostini Bueno, Ilson W. Rodrigues Filho, Roberto Carlos dos Santos Pacheco, Hugo Cesar Hoeschl, Ricardo Miranda Barcia, Alejandro Martins, Rosina Weber-Lee, Marcio C. da Costa
Publikováno v:
Case-Based Reasoning Research and Development ISBN: 9783540632337
ICCBR
ICCBR
In this paper we propose a large case-based reasoner for the legal domain. Analyzing legal texts for indexing purposes makes the implementation of large case bases a complex task. We present a methodology to automatically convert legal texts into leg
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::48ea6042232214ce02e0b64f52eb7dce
https://doi.org/10.1007/3-540-63233-6_491
https://doi.org/10.1007/3-540-63233-6_491
Autor:
Alejandro Martins, Rosina Weber-Lee, Roberto Carlos dos Santos Pacheco, Ricardo Miranda Barcia
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783540619550
EWCBR
EWCBR
This paper focuses on the problem of choosing the best match among a set of retrieved cases. The Select step is the subtask of case retrieval that produces the case that suggests the solution for the input case. There are many different ways to accom
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::434b15f35bc9cb058e0f3c8974e839cb
https://doi.org/10.1007/bfb0020629
https://doi.org/10.1007/bfb0020629
Publikováno v:
Case-Based Reasoning Research and Development ISBN: 9783540605980
ICCBR
ICCBR
Case-Based Reasoning (CBR) simulates the human way of solving problems as it solves a new problem using a successful past experience applied to a similar problem. In this paper we describe a CBR system that develops forecasts for cash flow accounts.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6890920d01fbc0dada2aa0ebb9691611
https://doi.org/10.1007/3-540-60598-3_47
https://doi.org/10.1007/3-540-60598-3_47