Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Rosales, Leobardo"'
Autor:
Rosales, Leobardo
We show a Hopf boundary point lemma for $u=u_{1}-u_{2},$ given $u_{1},u_{2} \in C^{1,\alpha}$ each weak solutions to a quasilinear equation $\sum_{i=1}^{n} D_{i}(A^{i}(x,u,Du))+B(x,u,Du)=0$ under mild boundedness assumptions on $A^{1},\ldots,A^{n},B.
Externí odkaz:
http://arxiv.org/abs/1806.09798
Autor:
Rosales, Leobardo
We give a Hopf boundary point lemma for weak solutions of linear divergence form uniformly elliptic equations, with H$\ddot{\text{o}}$lder continuous top-order coefficients and lower-order coefficients in a Morrey space.
Comment: 14 pages, Canad
Comment: 14 pages, Canad
Externí odkaz:
http://arxiv.org/abs/1806.07003
Autor:
Rosales, Leobardo
We study $n$-dimensional area-minimizing currents $T$ in $\mathbb{R}^{n+1},$ with boundary $\partial T$ satisfying two properties: $\partial T$ is locally a finite sum of $(n-1)$-dimensional $C^{1,\alpha}$ orientable submanifolds which only meet tang
Externí odkaz:
http://arxiv.org/abs/1805.01287
Autor:
Rosales, Leobardo
We give partial boundary regularity for co-dimension one absolutely area-minimizing currents at points where the boundary consists of a sum of $C^{1,\alpha}$ submanifolds, possibly with multiplicity, meeting tangentially, given that the current has a
Externí odkaz:
http://arxiv.org/abs/1704.05164
Autor:
Rosales, Leobardo
We introduce and study co-dimension one area-minimizing locally rectifiable currents $T$ with $C^{1,\alpha}$ tangentially immersed boundary: $\partial T$ is locally a finite sum of orientable co-dimension two submanifolds which only intersect tangent
Externí odkaz:
http://arxiv.org/abs/1603.08568
Autor:
Rosales, Leobardo
We give partial boundary regularity for co-dimension one absolutely area-minimizing currents at points where the boundary consists of a sum of $C^{1,\alpha}$ submanifolds, possibly with multiplicity, meeting tangentially, given that the current has a
Externí odkaz:
http://arxiv.org/abs/1508.04229
Autor:
Rosales, Leobardo.
Publikováno v:
May be available electronically.
Thesis (Ph. D.)--Stanford University, 2007.
Submitted to the Department of Mathematics. Copyright by the author.
Submitted to the Department of Mathematics. Copyright by the author.
Autor:
Rosales, Leobardo1 (AUTHOR) rosales.leobardo@gmail.com
Publikováno v:
Bulletin of the Brazilian Mathematical Society. Jun2022, Vol. 53 Issue 2, p413-441. 29p.
Autor:
Rosales, Leobardo
Publikováno v:
Proceedings of the American Mathematical Society, 2016 Mar 01. 144(3), 1209-1222.
Externí odkaz:
https://www.jstor.org/stable/procamermathsoci.144.3.1209
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.