Zobrazeno 1 - 10
of 201
pro vyhledávání: '"Rosales, J. C."'
Let $\mathcal{C}\subseteq \mathbb{N}^p$ be an integer cone. A $\mathcal{C}$-semigroup $S\subseteq \mathcal{C}$ is an affine semigroup such that the set $\mathcal{C}\setminus S$ is finite. Such $\mathcal{C}$-semigroups are central to our study. We dev
Externí odkaz:
http://arxiv.org/abs/2409.06376
Autor:
Moreno-Frías, M. A., Rosales, J. C.
The main aim of this work is to introduce and justify the study of semi-covarities. A {\it semi-covariety} is a non-empty family $\mathcal{F}$ of numerical semigroups such that it is closed under finite intersections, has a minimum, $\min(\mathcal{F}
Externí odkaz:
http://arxiv.org/abs/2407.18984
A numerical semigroup $S$ is coated with odd elements (Coe-semigroup), if $\left\{x-1, x+1\right\}\subseteq S$ for all odd element $x$ in $S$. In this note, we will study this kind of numerical semigroups. In particular, we are interested in the stud
Externí odkaz:
http://arxiv.org/abs/2407.17153
Autor:
Moreno-Frías, M. A., Rosales, J. C.
Let $S$ be a numerical semigroup. We will say that $h\in {\mathbb{N}} \backslash S$ is an {\it isolated gap }of $S$ if $\{h-1,h+1\}\subseteq S.$ A numerical semigroup without isolated gaps is called perfect numerical semigroup. Denote by ${\mathrm m}
Externí odkaz:
http://arxiv.org/abs/2305.14967
Autor:
Moreno-Frías, M. A., Rosales, J. C.
In this work we will show that if $F$ is a positive integer, then ${\mathrm{Sat}}(F)=\{S\mid S \mbox{ is a saturated numerical semigroup with Frobenius number } F\}$ is a covariety. As a consequence, we present two algorithms: one that computes ${\ma
Externí odkaz:
http://arxiv.org/abs/2305.13881
Autor:
Moreno-Frías, M. A., Rosales, J. C.
In this work we will introduce the concept of ratio-covariety, as a nonempty family $\mathscr{R}$ of numerical semigroups verifying certain properties. This concept will allow us to: \begin{enumerate} \item Describe an algorithmic process to compute
Externí odkaz:
http://arxiv.org/abs/2305.02070
Autor:
Moreno-Frías, M. A., Rosales, J. C.
In this work we will show that if $F$ is a positive integer, then the set ${\mathrm{Arf}}(F)=\{S\mid S \mbox{ is an Arf numerical semigroup with Frobenius number } F\}$ verifies the following conditions: 1) $\Delta(F)=\{0,F+1,\rightarrow\}$ is the mi
Externí odkaz:
http://arxiv.org/abs/2303.12470
Autor:
Moreno-Frías, M. A., Rosales, J. C.
Denote by $\mathrm m(S)$ the multiplicity of a numerical semigroup $S$. A covariety is a nonempty family $\mathscr{C}$ of numerical semigroups that fulfills the following conditions: there is the minimum of $\mathscr{C},$ the intersection of two elem
Externí odkaz:
http://arxiv.org/abs/2302.09121
Let $S$ and $\Delta$ be numerical semigroups. A numerical semigroup $S$ is an $\mathbf{I}(\Delta)$-{\it semigroup} if $S\backslash \{0\}$ is an ideal of $\Delta$. We will denote by $\mathcal{J}(\Delta)=\{S \mid S \text{ is an $\mathbf{I}(\Delta)$-sem
Externí odkaz:
http://arxiv.org/abs/2202.00920