Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Roohani, Yusuf"'
Autor:
Bunne, Charlotte, Roohani, Yusuf, Rosen, Yanay, Gupta, Ankit, Zhang, Xikun, Roed, Marcel, Alexandrov, Theo, AlQuraishi, Mohammed, Brennan, Patricia, Burkhardt, Daniel B., Califano, Andrea, Cool, Jonah, Dernburg, Abby F., Ewing, Kirsty, Fox, Emily B., Haury, Matthias, Herr, Amy E., Horvitz, Eric, Hsu, Patrick D., Jain, Viren, Johnson, Gregory R., Kalil, Thomas, Kelley, David R., Kelley, Shana O., Kreshuk, Anna, Mitchison, Tim, Otte, Stephani, Shendure, Jay, Sofroniew, Nicholas J., Theis, Fabian, Theodoris, Christina V., Upadhyayula, Srigokul, Valer, Marc, Wang, Bo, Xing, Eric, Yeung-Levy, Serena, Zitnik, Marinka, Karaletsos, Theofanis, Regev, Aviv, Lundberg, Emma, Leskovec, Jure, Quake, Stephen R.
The cell is arguably the most fundamental unit of life and is central to understanding biology. Accurate modeling of cells is important for this understanding as well as for determining the root causes of disease. Recent advances in artificial intell
Externí odkaz:
http://arxiv.org/abs/2409.11654
Autor:
Roohani, Yusuf, Lee, Andrew, Huang, Qian, Vora, Jian, Steinhart, Zachary, Huang, Kexin, Marson, Alexander, Liang, Percy, Leskovec, Jure
Agents based on large language models have shown great potential in accelerating scientific discovery by leveraging their rich background knowledge and reasoning capabilities. In this paper, we introduce BioDiscoveryAgent, an agent that designs new e
Externí odkaz:
http://arxiv.org/abs/2405.17631
Autor:
Chevalley, Mathieu, Sackett-Sanders, Jacob, Roohani, Yusuf, Notin, Pascal, Bakulin, Artemy, Brzezinski, Dariusz, Deng, Kaiwen, Guan, Yuanfang, Hong, Justin, Ibrahim, Michael, Kotlowski, Wojciech, Kowiel, Marcin, Misiakos, Panagiotis, Nazaret, Achille, Püschel, Markus, Wendler, Chris, Mehrjou, Arash, Schwab, Patrick
In drug discovery, mapping interactions between genes within cellular systems is a crucial early step. This helps formulate hypotheses regarding molecular mechanisms that could potentially be targeted by future medicines. The CausalBench Challenge wa
Externí odkaz:
http://arxiv.org/abs/2308.15395
Autor:
Nilforoshan, Hamed, Moor, Michael, Roohani, Yusuf, Chen, Yining, Šurina, Anja, Yasunaga, Michihiro, Oblak, Sara, Leskovec, Jure
Predicting how different interventions will causally affect a specific individual is important in a variety of domains such as personalized medicine, public policy, and online marketing. There are a large number of methods to predict the effect of an
Externí odkaz:
http://arxiv.org/abs/2301.12292
Causal inference is a vital aspect of multiple scientific disciplines and is routinely applied to high-impact applications such as medicine. However, evaluating the performance of causal inference methods in real-world environments is challenging due
Externí odkaz:
http://arxiv.org/abs/2210.17283
Autor:
Bommasani, Rishi, Hudson, Drew A., Adeli, Ehsan, Altman, Russ, Arora, Simran, von Arx, Sydney, Bernstein, Michael S., Bohg, Jeannette, Bosselut, Antoine, Brunskill, Emma, Brynjolfsson, Erik, Buch, Shyamal, Card, Dallas, Castellon, Rodrigo, Chatterji, Niladri, Chen, Annie, Creel, Kathleen, Davis, Jared Quincy, Demszky, Dora, Donahue, Chris, Doumbouya, Moussa, Durmus, Esin, Ermon, Stefano, Etchemendy, John, Ethayarajh, Kawin, Fei-Fei, Li, Finn, Chelsea, Gale, Trevor, Gillespie, Lauren, Goel, Karan, Goodman, Noah, Grossman, Shelby, Guha, Neel, Hashimoto, Tatsunori, Henderson, Peter, Hewitt, John, Ho, Daniel E., Hong, Jenny, Hsu, Kyle, Huang, Jing, Icard, Thomas, Jain, Saahil, Jurafsky, Dan, Kalluri, Pratyusha, Karamcheti, Siddharth, Keeling, Geoff, Khani, Fereshte, Khattab, Omar, Koh, Pang Wei, Krass, Mark, Krishna, Ranjay, Kuditipudi, Rohith, Kumar, Ananya, Ladhak, Faisal, Lee, Mina, Lee, Tony, Leskovec, Jure, Levent, Isabelle, Li, Xiang Lisa, Li, Xuechen, Ma, Tengyu, Malik, Ali, Manning, Christopher D., Mirchandani, Suvir, Mitchell, Eric, Munyikwa, Zanele, Nair, Suraj, Narayan, Avanika, Narayanan, Deepak, Newman, Ben, Nie, Allen, Niebles, Juan Carlos, Nilforoshan, Hamed, Nyarko, Julian, Ogut, Giray, Orr, Laurel, Papadimitriou, Isabel, Park, Joon Sung, Piech, Chris, Portelance, Eva, Potts, Christopher, Raghunathan, Aditi, Reich, Rob, Ren, Hongyu, Rong, Frieda, Roohani, Yusuf, Ruiz, Camilo, Ryan, Jack, Ré, Christopher, Sadigh, Dorsa, Sagawa, Shiori, Santhanam, Keshav, Shih, Andy, Srinivasan, Krishnan, Tamkin, Alex, Taori, Rohan, Thomas, Armin W., Tramèr, Florian, Wang, Rose E., Wang, William, Wu, Bohan, Wu, Jiajun, Wu, Yuhuai, Xie, Sang Michael, Yasunaga, Michihiro, You, Jiaxuan, Zaharia, Matei, Zhang, Michael, Zhang, Tianyi, Zhang, Xikun, Zhang, Yuhui, Zheng, Lucia, Zhou, Kaitlyn, Liang, Percy
AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically
Externí odkaz:
http://arxiv.org/abs/2108.07258
Autor:
Huang, Kexin, Fu, Tianfan, Gao, Wenhao, Zhao, Yue, Roohani, Yusuf, Leskovec, Jure, Coley, Connor W., Xiao, Cao, Sun, Jimeng, Zitnik, Marinka
Therapeutics machine learning is an emerging field with incredible opportunities for innovatiaon and impact. However, advancement in this field requires formulation of meaningful learning tasks and careful curation of datasets. Here, we introduce The
Externí odkaz:
http://arxiv.org/abs/2102.09548
One third of stroke survivors have language difficulties. Emerging evidence suggests that their likelihood of recovery depends mainly on the damage to language centers. Thus previous research for predicting language recovery post-stroke has focused o
Externí odkaz:
http://arxiv.org/abs/1811.10520
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.