Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Rong-nian Wang"'
Autor:
Rong-Nian Wang, De-Han Chen
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2013, Iss 16, Pp 1-16 (2013)
We study the anti-periodic problem for the semilinear partial neutral evolution equation in the form \begin{equation*} \begin{array}{l}\displaystyle\frac{d}{dt}[u(t)+h(t,u(t))]+Au(t)=f(t,u(t)),\quad t\in \mathbb{R} \end{array} \end{equation*} in a Ba
Externí odkaz:
https://doaj.org/article/a16922f0d99c47ff88fe1fc5880ecf33
Autor:
Jun Xia, Rong-Nian Wang
Publikováno v:
Advances in Difference Equations, Vol 2011 (2011)
Externí odkaz:
https://doaj.org/article/6b4c1aa7a68c4cccaedf4d91677cba5e
Publikováno v:
SIAM Journal on Applied Dynamical Systems. 22:199-234
Publikováno v:
Topological Methods in Nonlinear Analysis. :359-384
Publikováno v:
International Mathematics Research Notices. 2022:4801-4889
We consider a nonlinear delay evolution equation with multivalued perturbation on a noncompact interval. The nonlinearity, having convex and closed values, is upper hemicontinuous with respect to the solution variable. A basic question on whether the
Publikováno v:
Topological Methods in Nonlinear Analysis. :135-160
This paper deals with a nonlinear Volterra delay evolution inclusion subjected to a nonlocal implicit initial condition. The evolution inclusion involves an $m$-dissipative operator (possibly multivalued and/or nonlinear) and a noncompact interval. W
Publikováno v:
SIAM Journal on Mathematical Analysis; 2023, Vol. 55 Issue 5, p5386-5431, 46p
Publikováno v:
Topological Methods in Nonlinear Analysis; 2022, Vol. 59 Issue 1, p359-384, 26p
Publikováno v:
Discrete & Continuous Dynamical Systems. 41:3343
This paper is concerned with the tempered pullback dynamics of the 2D Navier-Stokes equations with sublinear time delay operators subject to non-homogeneous boundary conditions in Lipschitz-like domains. By virtue of the estimates of background flow
Publikováno v:
Zeitschrift für Analysis und ihre Anwendungen. 35:173-180