Zobrazeno 1 - 10
of 31
pro vyhledávání: '"Ronaldo Freire"'
Autor:
Daniel Flórez-Orrego, Cyro Albuquerque, Julio A. M. Da Silva, Ronaldo Freire, Silvio De Oliveira Junior
Publikováno v:
Frontiers in Chemical Engineering, Vol 4 (2022)
Due to restricted weight and space budget on floating production, storage and offloading units (FPSO), the offshore utility systems have been limited to low-efficiency energy technologies. Moreover, owing to time-varying energy demands of the FPSOs,
Externí odkaz:
https://doaj.org/article/1d78bfba3e8a4a1595468e2338ea25d9
Autor:
de Lima, Ronaldo Freire
Publikováno v:
Matem\'atica Contempor\^anea, 2022, Special Issue in honor of Professor Renato de Azevedo Tribuzy on the occasion of his 75th birthday
We survey the main extensions of the classical Hadamard, Liebmann and Cohn-Vossen rigidity theorems on convex surfaces of $3$-Euclidean space to the context of convex hypersurfaces of Riemannian manifolds. The results we present include the one by Pr
Externí odkaz:
http://arxiv.org/abs/2302.00809
Autor:
de Lima, Ronaldo Freire
Given orientable Riemannian manifolds $M^n$ and $\bar M^{n+1},$ we study flows $F_t:M^n\rightarrow\bar M^{n+1},$ called Weingarten flows,in which the hypersurfaces $F_t(M)$ evolve in the direction of their normal vectors with speed given by a functio
Externí odkaz:
http://arxiv.org/abs/2205.09566
Autor:
de Lima, Ronaldo Freire
We consider translating solitons to flows by positive powers $\alpha$ of the Gaussian curvature -- called $K^\alpha$-flows -- in Riemannian products $M\times\mathbb R.$ We prove that, when $M$ is the Euclidean space $\mathbb R^n,$ the sphere $\mathbb
Externí odkaz:
http://arxiv.org/abs/2109.05247
Autor:
de Lima, Ronaldo Freire
We establish the following Hadamard--Stoker type theorem: Let $f:M^n\rightarrow\mathscr{H}^n\times\mathbb R$ be a complete connected hypersurface with positive definite second fundamental form, where $\mathscr H^n$ is a Hadamard manifold. If the heig
Externí odkaz:
http://arxiv.org/abs/1806.01509
Autor:
Ronaldo Freire de Lima
Publikováno v:
Archiv der Mathematik. 120:437-448
We consider translating solitons to flows by positive powers $\alpha$ of the Gaussian curvature -- called $K^\alpha$-flows -- in Riemannian products $M\times\mathbb R.$ We prove that, when $M$ is the Euclidean space $\mathbb R^n,$ the sphere $\mathbb
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
De Lima, Ronaldo Freire
Publikováno v:
Proceedings of the American Mathematical Society, 2016 Apr 01. 144(4), 1697-1710.
Externí odkaz:
https://www.jstor.org/stable/procamermathsoci.144.4.1697
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Galvão, Marcos César Cabral
Publikováno v:
Repositório Institucional da UFRN
Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES Este trabalho propõe formas de utilizar programas de computadores para ensino e aprendizagem da matemática desenvolvendo o pensamento computacional. As modalidades propostas s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3056::41846dfb7c94c70c2edf97898aa2e58d
https://repositorio.ufrn.br/handle/123456789/45644
https://repositorio.ufrn.br/handle/123456789/45644